Environmental layers for SDM simulations (GDPlants)

The dataset contains seven environmental layers (average annual temperature, aridity [annual precipitation divided by annual potential evapotranspiration], frost change frequency, precipitation in the driest quarter, mean diurnal temperature range, and precipitation seasonality) modified from CHELSA (https://chelsa-climate.org/) and three soil layers (soil organic matter content, pH water, and clay content) modified from SoilGrids (https://soilgrids.org/).

Funding Information:

This work was supported by:

Related Datasets

  • https://chelsa-climate.org/downloads/
  • https://soilgrids.org/
  • Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
  • Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, et al. 2014. SoilGrids1km — Global soil information based on automated mapping (B Bond-Lamberty, Ed.). PLoS ONE 9: e105992.
  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, et al. 2017. SoilGrids250m: Global gridded soil information based on machine learning (B Bond-Lamberty, Ed.). PLoS ONE 12: e0169748.

Citation:

Lyu, Lisha (2022). Environmental layers for SDM simulations (GDPlants). EnviDat. doi:10.16904/envidat.309.

DataCite ISO 19139 GCMD DIF README.txt BibTex RIS

Data and Resources

Metadata

Field Values
DOI 10.16904/envidat.309
Publication State Published
Authors
  • Email: lisha.lyufoo(at)usys.ethz.ch ORCID: 0000-0001-7855-8109 Given Name: Lisha Family Name: Lyu Affiliation: ETH Zürich Additional Affiliation : WSL
Contact Person Given Name: Lisha Family Name: Lyu Email: lisha.lyufoo(at)usys.ethz.ch ORCID: 0000-0001-7855-8109
Subtitles
Publication Publisher: EnviDat Year: 2022
Dates
  • Type: Collected Date: 2020-01-01
Version 1.0
Type dataset
General Type Dataset
Language English
Location Global
Content License Creative Commons Attribution Share-Alike (CC-BY-SA)    [Open Data]
Last Updated September 27, 2023, 14:06 (UTC)
Created February 7, 2022, 17:19 (UTC)