f | { | f | { |
| "author": "[{\"affiliation\": \"CRYOS, ENAC, EPFL\", | | "author": "[{\"affiliation\": \"CRYOS, ENAC, EPFL\", |
| \"affiliation_02\": \"SLF / WSL\", \"affiliation_03\": \"\", | | \"affiliation_02\": \"SLF / WSL\", \"affiliation_03\": \"\", |
n | \"email\": \"jerome.dujardin@slf.ch\", \"given_name\": | n | \"data_credit\": [\"collection\", \"validation\", \"curation\", |
| \"J\\u00e9r\\u00f4me\", \"identifier\": \"0000-0001-5404-7734\", | | \"software\", \"publication\", \"supervision\"], \"email\": |
| \"name\": \"Dujardin\"}, {\"affiliation\": \"CRYOS, ENAC, EPFL\", | | \"jerome.dujardin@slf.ch\", \"given_name\": \"J\\u00e9r\\u00f4me\", |
| \"affiliation_02\": \"SLF / WSL\", \"affiliation_03\": \"EPFL\", | | |
| \"email\": \"lehning@slf.ch\", \"given_name\": \"Michael\", | | |
| \"identifier\": \"0000-0002-8442-0875\", \"name\": \"Lehning\"}]", | | \"identifier\": \"0000-0001-5404-7734\", \"name\": \"Dujardin\"}, |
| | | {\"affiliation\": \"CRYOS, ENAC, EPFL\", \"affiliation_02\": \"SLF / |
| | | WSL\", \"affiliation_03\": \"EPFL\", \"data_credit\": |
| | | [\"publication\", \"supervision\"], \"email\": \"lehning@slf.ch\", |
| | | \"given_name\": \"Michael\", \"identifier\": \"0000-0002-8442-0875\", |
| | | \"name\": \"Lehning\"}]", |
| "author_email": null, | | "author_email": null, |
| "creator_user_id": "16379126-7832-4ddf-b7b2-4e1f408d532e", | | "creator_user_id": "16379126-7832-4ddf-b7b2-4e1f408d532e", |
n | "date": "[{\"date\": \"2020-01-01\", \"date_type\": \"collected\", | n | "date": "[{\"date\": \"2022-03-14\", \"date_type\": \"created\", |
| \"end_date\": \"\"}]", | | \"end_date\": \"\"}]", |
| "doi": "10.16904/envidat.301", | | "doi": "10.16904/envidat.301", |
| "funding": "[{\"grant_number\": \"\", \"institution\": \"SNF\", | | "funding": "[{\"grant_number\": \"\", \"institution\": \"SNF\", |
| \"institution_url\": \"\"}, {\"grant_number\": \"\", \"institution\": | | \"institution_url\": \"\"}, {\"grant_number\": \"\", \"institution\": |
| \"SFOE\", \"institution_url\": \"\"}, {\"grant_number\": \"\", | | \"SFOE\", \"institution_url\": \"\"}, {\"grant_number\": \"\", |
| \"institution\": \"Innosuisse\", \"institution_url\": \"\"}]", | | \"institution\": \"Innosuisse\", \"institution_url\": \"\"}]", |
| "groups": [], | | "groups": [], |
| "id": "d004814d-4376-4e5c-8588-396ddf246669", | | "id": "d004814d-4376-4e5c-8588-396ddf246669", |
n | "isopen": true, | n | "isopen": false, |
| "language": "en", | | "language": "en", |
n | "license_id": "CC0-1.0", | n | "license_id": "other-undefined", |
| "license_title": "Creative Commons Zero - No Rights Reserved (CC0 | | "license_title": "Other (Specified in the description)", |
| 1.0)", | | |
| "license_url": "https://creativecommons.org/publicdomain/zero/1.0/", | | |
| "maintainer": "{\"affiliation\": \"CRYOS, ENAC, EPFL\", \"email\": | | "maintainer": "{\"affiliation\": \"CRYOS, ENAC, EPFL\", \"email\": |
| \"jerome.dujardin@slf.ch\", \"given_name\": \"J\u00e9r\u00f4me\", | | \"jerome.dujardin@slf.ch\", \"given_name\": \"J\u00e9r\u00f4me\", |
| \"identifier\": \"0000-0001-5404-7734\", \"name\": \"Dujardin\"}", | | \"identifier\": \"0000-0001-5404-7734\", \"name\": \"Dujardin\"}", |
| "maintainer_email": null, | | "maintainer_email": null, |
| "metadata_created": "2022-01-07T11:24:01.534922", | | "metadata_created": "2022-01-07T11:24:01.534922", |
n | "metadata_modified": "2022-03-02T16:06:23.292862", | n | "metadata_modified": "2022-03-16T15:21:14.779671", |
| "name": "wind-topo_model", | | "name": "wind-topo_model", |
n | | n | "notes": "Wind-Topo is a statistical downscaling model for near |
| | | surface wind fields especially suited for highly complex |
| | | terrain.\r\n\r\nIt is based on deep learning and was trained |
| | | (calibrated) using the hourly wind speed and direction from 261 |
| | | automatic measurement stations (IMIS and SwissMetNet) located in |
| | | Switzerland. The periods 1st October 2015 to 1st October 2016 and 1st |
| | | October 2017 to 1st October 2018 were used for training. The model was |
| | | validated using 60 other stations on the period 1st October 2016 to |
| | | 1st October 2017. Wind-Topo was trained using COSMO-1 data and a |
| | | 53-meter Digital Elevation Model as input.\r\n\r\nThis dataset |
| | | provides all the necessary code to understand, use and incorporate |
| | | Wind-Topo in a new downscaling scheme. Specifically, the dataset |
| "notes": "Architecture of Wind-Topo and its optimized parameters, as | | contains the architecture of Wind-Topo and its optimized parameters, |
| well as a python script to downscale uniform wind fields with a | | as well as a python script to downscale uniform wind fields with a |
| prescribed vertical profile for any given 53-meter DEM.\r\nAccompanies | | prescribed vertical profile for any given 53-meter |
| the publication \"Wind-Topo: Downscaling near-surface wind fields to | | DEM.\r\n\r\nAccompanies the publication \"Wind-Topo: Downscaling |
| high-resolution topography in highly complex terrain with deep | | near-surface wind fields to high-resolution topography in highly |
| learning\" published in the Quarterly Journal of the Royal | | complex terrain with deep learning\" Dujardin and Lehning, Quarterly |
| Meteorological Society, 2022.", | | Journal of the Royal Meteorological Society, 2022. |
| | | https://doi.org/10.1002/qj.4265\r\nPlease cite this publication if you |
| | | use Wind-Topo or derive new models from it.\r\nThe code can be used |
| | | under the GNU Affero General Public License (AGPL).", |
| "num_resources": 1, | | "num_resources": 1, |
n | "num_tags": 7, | n | "num_tags": 8, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2016-11-17T12:24:20.447699", | | "created": "2016-11-17T12:24:20.447699", |
| "description": "CRYOS is the EPFL laboratory of the WSL/SLF - EPFL | | "description": "CRYOS is the EPFL laboratory of the WSL/SLF - EPFL |
| joint appointment for Prof. Michael Lehning. At his WSL side, Prof. | | joint appointment for Prof. Michael Lehning. At his WSL side, Prof. |
| Michael Lehning is head of the research unit \"Snow and Permafrost\" | | Michael Lehning is head of the research unit \"Snow and Permafrost\" |
| at SLF in Davos.\r\n \r\n###General Mission\r\nThe laboratory of | | at SLF in Davos.\r\n \r\n###General Mission\r\nThe laboratory of |
| cryospheric sciences investigates the processes that shape snow and | | cryospheric sciences investigates the processes that shape snow and |
| ice in mountains and polar regions. In particular, snow cover | | ice in mountains and polar regions. In particular, snow cover |
| processes, snow-atmosphere interactions and mountain hydrology are in | | processes, snow-atmosphere interactions and mountain hydrology are in |
| the focus of current research. This includes a strive for deeper | | the focus of current research. This includes a strive for deeper |
| understanding of the complicated mass and energy exchange processes | | understanding of the complicated mass and energy exchange processes |
| within, above and below a snow cover but also predictions of future | | within, above and below a snow cover but also predictions of future |
| snow and ice in mountains and high latitudes. A newer work area is the | | snow and ice in mountains and high latitudes. A newer work area is the |
| risk management and optimization in the field of renewable energy | | risk management and optimization in the field of renewable energy |
| production based on our detailed understanding of water, wind and | | production based on our detailed understanding of water, wind and |
| radiation processes in mountains.\r\n\r\nMore information: | | radiation processes in mountains.\r\n\r\nMore information: |
| http://cryos.epfl.ch/", | | http://cryos.epfl.ch/", |
| "id": "b2ef52fe-c56a-4973-8309-24837f3848ed", | | "id": "b2ef52fe-c56a-4973-8309-24837f3848ed", |
| "image_url": "2019-03-26-151807.125593CRYOSLogoFinal.jpg", | | "image_url": "2019-03-26-151807.125593CRYOSLogoFinal.jpg", |
| "is_organization": true, | | "is_organization": true, |
| "name": "cryos", | | "name": "cryos", |
| "state": "active", | | "state": "active", |
| "title": "CRYOS", | | "title": "CRYOS", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "b2ef52fe-c56a-4973-8309-24837f3848ed", | | "owner_org": "b2ef52fe-c56a-4973-8309-24837f3848ed", |
| "private": false, | | "private": false, |
| "publication": "{\"publication_year\": \"2022\", \"publisher\": | | "publication": "{\"publication_year\": \"2022\", \"publisher\": |
| \"EnviDat\"}", | | \"EnviDat\"}", |
n | "publication_state": "pub_pending", | n | "publication_state": "approved", |
| "related_datasets": "Wind-Topo is an ongoing development. New | | "related_datasets": " * Wind-Topo is an ongoing development. New |
| versions can be found | | versions can be found |
n | at:\r\nhttps://gitlabext.wsl.ch/dujardin/wind-topo", | n | at:\r\nhttps://gitlabext.wsl.ch/dujardin/wind-topo\r\n\r\n * The model |
| "related_publications": "", | | and its performance are described in:\r\n\"Wind-Topo: Downscaling |
| | | near-surface wind fields to high-resolution topography in highly |
| | | complex terrain with deep learning\" Dujardin and Lehning, Quarterly |
| | | Journal of the Royal Meteorological Society, 2022. |
| | | https://doi.org/10.1002/qj.4265\r\nPlease cite this publication if you |
| | | use Wind-Topo or derive new models from it.", |
| | | "related_publications": " * \"Wind-Topo: Downscaling near-surface |
| | | wind fields to high-resolution topography in highly complex terrain |
| | | with deep learning\" Dujardin and Lehning, Quarterly Journal of the |
| | | Royal Meteorological Society, 2022. https://doi.org/10.1002/qj.4265", |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
n | "resource_type": "dataset", | n | "resource_type": "software", |
| "resource_type_general": "dataset", | | "resource_type_general": "software", |
| "resources": [ | | "resources": [ |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2022-01-07T11:24:06.974225", | | "created": "2022-01-07T11:24:06.974225", |
n | "description": "", | n | "description": "Contains: all codes, installation procedure, |
| | | technical documentation, an example of Digital Elevation Model of the |
| | | Swiss Alps, the expected outputs of the code (downscaled wind |
| | | fields).", |
| "doi": "", | | "doi": "", |
n | "format": "", | n | "format": ".zip", |
| "hash": "", | | "hash": "", |
| "id": "b7eb1ae7-9e0d-4036-b108-fd7b515f1ea6", | | "id": "b7eb1ae7-9e0d-4036-b108-fd7b515f1ea6", |
n | "last_modified": null, | n | "last_modified": "2022-03-16T15:42:32.497435", |
| "metadata_modified": "2022-01-07T11:24:06.957079", | | "metadata_modified": "2022-03-16T14:44:34.770509", |
| "mimetype": null, | | "mimetype": null, |
| "mimetype_inner": null, | | "mimetype_inner": null, |
n | "name": "", | n | "name": "Wind-Topo_v0.1.0", |
| "package_id": "d004814d-4376-4e5c-8588-396ddf246669", | | "package_id": "d004814d-4376-4e5c-8588-396ddf246669", |
| "position": 0, | | "position": 0, |
| "publication_state": "", | | "publication_state": "", |
| "resource_size": "{\"size_units\": \"kb\", \"size_value\": | | "resource_size": "{\"size_units\": \"kb\", \"size_value\": |
| \"\"}", | | \"\"}", |
| "resource_type": null, | | "resource_type": null, |
| "restricted": "{\"allowed_users\": \"\", \"level\": \"public\", | | "restricted": "{\"allowed_users\": \"\", \"level\": \"public\", |
| \"shared_secret\": \"\"}", | | \"shared_secret\": \"\"}", |
n | "size": null, | n | "size": 447661935, |
| "state": "active", | | "state": "active", |
n | "url": "", | n | "url": |
| | | e/b7eb1ae7-9e0d-4036-b108-fd7b515f1ea6/download/wind-topo_v0.1.0.zip", |
| "url_type": null | | "url_type": "upload" |
| } | | } |
| ], | | ], |
| "spatial": | | "spatial": |
| 80838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}", | | 80838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}", |
| "spatial_info": "Switzerland", | | "spatial_info": "Switzerland", |
| "state": "active", | | "state": "active", |
| "subtitle": "", | | "subtitle": "", |
| "tags": [ | | "tags": [ |
| { | | { |
| "display_name": "COMPLEX TERRAIN", | | "display_name": "COMPLEX TERRAIN", |
| "id": "4da4b8e9-b59c-4152-8ba6-25ae11657f61", | | "id": "4da4b8e9-b59c-4152-8ba6-25ae11657f61", |
| "name": "COMPLEX TERRAIN", | | "name": "COMPLEX TERRAIN", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "CONVOLUTIONAL NEURAL NETWORKS", | | "display_name": "CONVOLUTIONAL NEURAL NETWORKS", |
| "id": "4c408460-fb63-494c-bfec-acc86e5d1ebc", | | "id": "4c408460-fb63-494c-bfec-acc86e5d1ebc", |
| "name": "CONVOLUTIONAL NEURAL NETWORKS", | | "name": "CONVOLUTIONAL NEURAL NETWORKS", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "DOWNSCALING", | | "display_name": "DOWNSCALING", |
| "id": "469b794e-38f0-4a97-879a-b12d8253a221", | | "id": "469b794e-38f0-4a97-879a-b12d8253a221", |
| "name": "DOWNSCALING", | | "name": "DOWNSCALING", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "HIGH RESOLUTION", | | "display_name": "HIGH RESOLUTION", |
| "id": "485950e8-f269-4960-bbf6-7ae9ad756bcc", | | "id": "485950e8-f269-4960-bbf6-7ae9ad756bcc", |
| "name": "HIGH RESOLUTION", | | "name": "HIGH RESOLUTION", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
n | | n | "display_name": "MACHINE LEARNING", |
| | | "id": "66c2084e-b683-47a2-878c-48f33c6e2a78", |
| | | "name": "MACHINE LEARNING", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| "display_name": "METEOROLOGY", | | "display_name": "METEOROLOGY", |
| "id": "1cde4b46-1fd4-4227-b910-ce97d87f99ad", | | "id": "1cde4b46-1fd4-4227-b910-ce97d87f99ad", |
| "name": "METEOROLOGY", | | "name": "METEOROLOGY", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "SURFACE WINDS", | | "display_name": "SURFACE WINDS", |
| "id": "c44e52a7-1709-4f25-928d-97c95f5df31e", | | "id": "c44e52a7-1709-4f25-928d-97c95f5df31e", |
| "name": "SURFACE WINDS", | | "name": "SURFACE WINDS", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "TOPOGRAPHY", | | "display_name": "TOPOGRAPHY", |
| "id": "00a7c594-8c2a-4b5c-9ed9-0ff13cbb6d32", | | "id": "00a7c594-8c2a-4b5c-9ed9-0ff13cbb6d32", |
| "name": "TOPOGRAPHY", | | "name": "TOPOGRAPHY", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
| "title": "Wind-Topo_model", | | "title": "Wind-Topo_model", |
| "type": "dataset", | | "type": "dataset", |
| "url": null, | | "url": null, |
t | "version": "1.0" | t | "version": "0.1.0" |
| } | | } |