Changes
On September 16, 2024 at 7:37:39 AM UTC, Jiahui Kang:
-
Changed value of field
related_publications
toAutomatic Monitoring of Rock-Slope Failures Using Distributed Acoustic Sensing and Semi-Supervised Learning submitted to
in Distributed Acoustic Sensing Brienz
f | 1 | { | f | 1 | { |
2 | "author": "[{\"given_name\": \"Jiahui\", \"name\": \"Kang\", | 2 | "author": "[{\"given_name\": \"Jiahui\", \"name\": \"Kang\", | ||
3 | \"email\": \"jiahui.kang@wsl.ch\", \"data_credit\": [\"validation\", | 3 | \"email\": \"jiahui.kang@wsl.ch\", \"data_credit\": [\"validation\", | ||
4 | \"software\", \"publication\", \"curation\"], \"identifier\": | 4 | \"software\", \"publication\", \"curation\"], \"identifier\": | ||
5 | \"https://orcid.org/0009-0002-1791-9745\", \"affiliation\": \"Eidg. | 5 | \"https://orcid.org/0009-0002-1791-9745\", \"affiliation\": \"Eidg. | ||
6 | Forschungsanstalt WSL\"}, {\"given_name\": \"Fabian\", \"name\": | 6 | Forschungsanstalt WSL\"}, {\"given_name\": \"Fabian\", \"name\": | ||
7 | \"Walter\", \"email\": \"fabian.walter@wsl.ch\", \"data_credit\": | 7 | \"Walter\", \"email\": \"fabian.walter@wsl.ch\", \"data_credit\": | ||
8 | [\"software\", \"supervision\", \"validation\", \"publication\"], | 8 | [\"software\", \"supervision\", \"validation\", \"publication\"], | ||
9 | \"identifier\": \"https://orcid.org/0000-0001-6952-2761\", | 9 | \"identifier\": \"https://orcid.org/0000-0001-6952-2761\", | ||
10 | \"affiliation\": \"Eidg. Forschungsanstalt WSL\"}, {\"given_name\": | 10 | \"affiliation\": \"Eidg. Forschungsanstalt WSL\"}, {\"given_name\": | ||
11 | \"Patrick\", \"name\": \"Paitz\", \"email\": \"patrick.paitz@wsl.ch\", | 11 | \"Patrick\", \"name\": \"Paitz\", \"email\": \"patrick.paitz@wsl.ch\", | ||
12 | \"data_credit\": [\"software\", \"supervision\", \"publication\", | 12 | \"data_credit\": [\"software\", \"supervision\", \"publication\", | ||
13 | \"validation\"], \"identifier\": | 13 | \"validation\"], \"identifier\": | ||
14 | \"https://orcid.org/0000-0001-7464-224X\", \"affiliation\": \"Eidg. | 14 | \"https://orcid.org/0000-0001-7464-224X\", \"affiliation\": \"Eidg. | ||
15 | Forschungsanstalt WSL\"}, {\"given_name\": \"Johannes\", \"name\": | 15 | Forschungsanstalt WSL\"}, {\"given_name\": \"Johannes\", \"name\": | ||
16 | \"Aichele\", \"email\": \"johannes.aichele@eaps.ethz.ch\", | 16 | \"Aichele\", \"email\": \"johannes.aichele@eaps.ethz.ch\", | ||
17 | \"data_credit\": [\"publication\", \"collection\"], \"identifier\": | 17 | \"data_credit\": [\"publication\", \"collection\"], \"identifier\": | ||
18 | \"https://orcid.org/0000-0001-8019-9053\", \"affiliation\": | 18 | \"https://orcid.org/0000-0001-8019-9053\", \"affiliation\": | ||
19 | \"Department of Earth Sciences, ETH\"}, {\"given_name\": \"Pascal\", | 19 | \"Department of Earth Sciences, ETH\"}, {\"given_name\": \"Pascal\", | ||
20 | \"name\": \"Edme\", \"email\": \"pascal.edme@erdw.ethz.ch\", | 20 | \"name\": \"Edme\", \"email\": \"pascal.edme@erdw.ethz.ch\", | ||
21 | \"data_credit\": [\"collection\", \"publication\"], \"identifier\": | 21 | \"data_credit\": [\"collection\", \"publication\"], \"identifier\": | ||
22 | \"https://orcid.org/0000-0002-3041-0559\", \"affiliation\": | 22 | \"https://orcid.org/0000-0002-3041-0559\", \"affiliation\": | ||
23 | \"Department of Earth Sciences, ETH\"}, {\"given_name\": \"Lorenz\", | 23 | \"Department of Earth Sciences, ETH\"}, {\"given_name\": \"Lorenz\", | ||
24 | \"name\": \"Meier\", \"email\": \"post@lorenzmeier.ch\", | 24 | \"name\": \"Meier\", \"email\": \"post@lorenzmeier.ch\", | ||
25 | \"data_credit\": [\"collection\", \"publication\"], \"identifier\": | 25 | \"data_credit\": [\"collection\", \"publication\"], \"identifier\": | ||
26 | \"\", \"affiliation\": \"Geopraevent AG\"}, {\"given_name\": | 26 | \"\", \"affiliation\": \"Geopraevent AG\"}, {\"given_name\": | ||
27 | \"Andreas\", \"name\": \"Fichtner\", \"email\": | 27 | \"Andreas\", \"name\": \"Fichtner\", \"email\": | ||
28 | \"andreas.fichtner@erdw.ethz.ch\", \"data_credit\": [\"collection\", | 28 | \"andreas.fichtner@erdw.ethz.ch\", \"data_credit\": [\"collection\", | ||
29 | \"publication\"], \"identifier\": | 29 | \"publication\"], \"identifier\": | ||
30 | \"https://orcid.org/0000-0003-3090-963X\", \"affiliation\": | 30 | \"https://orcid.org/0000-0003-3090-963X\", \"affiliation\": | ||
31 | \"Department of Earth Sciences, ETH\"}]", | 31 | \"Department of Earth Sciences, ETH\"}]", | ||
32 | "author_email": null, | 32 | "author_email": null, | ||
33 | "creator_user_id": "c8c0dc65-790b-4ccb-849c-a97f8259c7ad", | 33 | "creator_user_id": "c8c0dc65-790b-4ccb-849c-a97f8259c7ad", | ||
34 | "date": | 34 | "date": | ||
35 | :\"collected\",\"date\":\"2023-05-16\",\"end_date\":\"2023-06-30\"}]", | 35 | :\"collected\",\"date\":\"2023-05-16\",\"end_date\":\"2023-06-30\"}]", | ||
36 | "doi": "10.16904/envidat.541", | 36 | "doi": "10.16904/envidat.541", | ||
37 | "funding": "[{\"institution\":\"Horizon Europe | 37 | "funding": "[{\"institution\":\"Horizon Europe | ||
38 | 2021\",\"grant_number\":\"No. | 38 | 2021\",\"grant_number\":\"No. | ||
39 | 01073148\",\"institution_url\":\"https://www.envseis.eu/projects\"}]", | 39 | 01073148\",\"institution_url\":\"https://www.envseis.eu/projects\"}]", | ||
40 | "groups": [], | 40 | "groups": [], | ||
41 | "id": "8ece0152-55ca-4547-8faf-99bfa56f6b03", | 41 | "id": "8ece0152-55ca-4547-8faf-99bfa56f6b03", | ||
42 | "isopen": true, | 42 | "isopen": true, | ||
43 | "license_id": "CC0-1.0", | 43 | "license_id": "CC0-1.0", | ||
44 | "license_title": "Creative Commons Zero - No Rights Reserved (CC0 | 44 | "license_title": "Creative Commons Zero - No Rights Reserved (CC0 | ||
45 | 1.0)", | 45 | 1.0)", | ||
46 | "license_url": "https://creativecommons.org/publicdomain/zero/1.0/", | 46 | "license_url": "https://creativecommons.org/publicdomain/zero/1.0/", | ||
47 | "maintainer": | 47 | "maintainer": | ||
48 | :\"jiahui.kang@wsl.ch\",\"given_name\":\"Jiahui\",\"name\":\"Kang\"}", | 48 | :\"jiahui.kang@wsl.ch\",\"given_name\":\"Jiahui\",\"name\":\"Kang\"}", | ||
49 | "maintainer_email": null, | 49 | "maintainer_email": null, | ||
50 | "metadata_created": "2024-06-05T14:53:32.198169", | 50 | "metadata_created": "2024-06-05T14:53:32.198169", | ||
n | 51 | "metadata_modified": "2024-09-16T07:37:18.867484", | n | 51 | "metadata_modified": "2024-09-16T07:37:38.978459", |
52 | "name": "distributed-acoustic-sensing-brienz", | 52 | "name": "distributed-acoustic-sensing-brienz", | ||
53 | "notes": "This dataset contains the Distributed Acoustic Sensing | 53 | "notes": "This dataset contains the Distributed Acoustic Sensing | ||
54 | (DAS), radar detection data used for training and result analysis in | 54 | (DAS), radar detection data used for training and result analysis in | ||
55 | the GRL paper titled `Automatic Monitoring of Rock-Slope Failures | 55 | the GRL paper titled `Automatic Monitoring of Rock-Slope Failures | ||
56 | Using Distributed Acoustic Sensing and Semi-Supervised Learning`. | 56 | Using Distributed Acoustic Sensing and Semi-Supervised Learning`. | ||
57 | \n\nThe DAS dataset (both waveform and cross-spectral density | 57 | \n\nThe DAS dataset (both waveform and cross-spectral density | ||
58 | matrices), extracted features, labeled dataset, two trained models | 58 | matrices), extracted features, labeled dataset, two trained models | ||
59 | (feature extraction model and xgboost classification model), scripts | 59 | (feature extraction model and xgboost classification model), scripts | ||
60 | to reproduce the whole training and classification processes, and a | 60 | to reproduce the whole training and classification processes, and a | ||
61 | notebook to replicate the result analysis part are provided under the | 61 | notebook to replicate the result analysis part are provided under the | ||
62 | MIT license. To provide a reasonable data size, we chunked the raw | 62 | MIT license. To provide a reasonable data size, we chunked the raw | ||
63 | data to a few hundred channels which we used in our project. | 63 | data to a few hundred channels which we used in our project. | ||
64 | \n\nAbstract: \nEffective use of the wealth of information provided by | 64 | \n\nAbstract: \nEffective use of the wealth of information provided by | ||
65 | Distributed Acoustic Sensing (DAS) for mass movement monitoring | 65 | Distributed Acoustic Sensing (DAS) for mass movement monitoring | ||
66 | remains a challenge. We propose a semi-supervised neural network | 66 | remains a challenge. We propose a semi-supervised neural network | ||
67 | tailored to screen DAS data related to a series of rock collapses | 67 | tailored to screen DAS data related to a series of rock collapses | ||
68 | leading to a major failure of approximately 1.2 million cubic meters | 68 | leading to a major failure of approximately 1.2 million cubic meters | ||
69 | on 15 June 2023 in Brienz, Eastern Switzerland. Besides DAS, the | 69 | on 15 June 2023 in Brienz, Eastern Switzerland. Besides DAS, the | ||
70 | dataset from 16 May to 30 June 2023 includes Doppler radar data for | 70 | dataset from 16 May to 30 June 2023 includes Doppler radar data for | ||
71 | partially ground-truth labeling. The proposed algorithm is capable of | 71 | partially ground-truth labeling. The proposed algorithm is capable of | ||
72 | distinguishing between rock-slope failures and background noise, | 72 | distinguishing between rock-slope failures and background noise, | ||
73 | including road and train traffic, with a detection precision of over | 73 | including road and train traffic, with a detection precision of over | ||
74 | 95%. It identifies hundreds of precursory failures and shows sustained | 74 | 95%. It identifies hundreds of precursory failures and shows sustained | ||
75 | detection hours before and during the major collapse. Event size and | 75 | detection hours before and during the major collapse. Event size and | ||
76 | signal-to-noise ratio (SNR) are the key performance dependencies. As a | 76 | signal-to-noise ratio (SNR) are the key performance dependencies. As a | ||
77 | critical part of our algorithm operates unsupervised, we suggest that | 77 | critical part of our algorithm operates unsupervised, we suggest that | ||
78 | it is suitable for general monitoring of natural hazards.\n", | 78 | it is suitable for general monitoring of natural hazards.\n", | ||
79 | "num_resources": 1, | 79 | "num_resources": 1, | ||
80 | "num_tags": 6, | 80 | "num_tags": 6, | ||
81 | "organization": { | 81 | "organization": { | ||
82 | "approval_status": "approved", | 82 | "approval_status": "approved", | ||
83 | "created": "2016-09-02T14:17:02.029939", | 83 | "created": "2016-09-02T14:17:02.029939", | ||
84 | "description": " The Research Unit investigates natural hazard | 84 | "description": " The Research Unit investigates natural hazard | ||
85 | processes in mountainous areas, in particular the triggering and | 85 | processes in mountainous areas, in particular the triggering and | ||
86 | propagation of floods, sediment transport, landslides, debris flows | 86 | propagation of floods, sediment transport, landslides, debris flows | ||
87 | and rock fall. Process studies on the scale of slopes, channels and | 87 | and rock fall. Process studies on the scale of slopes, channels and | ||
88 | catchments form the basis for the development of simulation models and | 88 | catchments form the basis for the development of simulation models and | ||
89 | of hazard assessment procedures and for the design of countermeasures. | 89 | of hazard assessment procedures and for the design of countermeasures. | ||
90 | To this end worldwide unique observation systems are developed, such | 90 | To this end worldwide unique observation systems are developed, such | ||
91 | as a debris flow balance and geophone systems for bedload transport. | 91 | as a debris flow balance and geophone systems for bedload transport. | ||
92 | Damage and damaging processes due to frequent and extreme events are | 92 | Damage and damaging processes due to frequent and extreme events are | ||
93 | assessed as prerequisites for the risk-based and sustainable | 93 | assessed as prerequisites for the risk-based and sustainable | ||
94 | management of natural hazards.\r\n\r\nA second focus of the unit is on | 94 | management of natural hazards.\r\n\r\nA second focus of the unit is on | ||
95 | the estimation and prediction of snow and water resources, e.g. for | 95 | the estimation and prediction of snow and water resources, e.g. for | ||
96 | hydropower production or early recognition of drought. The unit | 96 | hydropower production or early recognition of drought. The unit | ||
97 | operates a snow hydrological service for federal and cantonal agencies | 97 | operates a snow hydrological service for federal and cantonal agencies | ||
98 | and a drought information platform for a broad range of water | 98 | and a drought information platform for a broad range of water | ||
99 | users.\r\n\r\n__Further information__: | 99 | users.\r\n\r\n__Further information__: | ||
100 | .ch/en/about-wsl/organization/research-units/mountain-hydrology.html", | 100 | .ch/en/about-wsl/organization/research-units/mountain-hydrology.html", | ||
101 | "id": "8ca28da8-ad8f-401a-9356-0aa7fdba2604", | 101 | "id": "8ca28da8-ad8f-401a-9356-0aa7fdba2604", | ||
102 | "image_url": "2018-07-10-091052.004438LogoWSL.svg", | 102 | "image_url": "2018-07-10-091052.004438LogoWSL.svg", | ||
103 | "is_organization": true, | 103 | "is_organization": true, | ||
104 | "name": "gebirgshydrologie", | 104 | "name": "gebirgshydrologie", | ||
105 | "state": "active", | 105 | "state": "active", | ||
106 | "title": "GebirgsHydrologie", | 106 | "title": "GebirgsHydrologie", | ||
107 | "type": "organization" | 107 | "type": "organization" | ||
108 | }, | 108 | }, | ||
109 | "owner_org": "8ca28da8-ad8f-401a-9356-0aa7fdba2604", | 109 | "owner_org": "8ca28da8-ad8f-401a-9356-0aa7fdba2604", | ||
110 | "private": false, | 110 | "private": false, | ||
111 | "publication": | 111 | "publication": | ||
112 | "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", | 112 | "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", | ||
113 | "publication_state": "published", | 113 | "publication_state": "published", | ||
114 | "related_publications": "Automatic Monitoring of Rock-Slope Failures | 114 | "related_publications": "Automatic Monitoring of Rock-Slope Failures | ||
t | 115 | Using Distributed Acoustic Sensing and Semi-Supervised Learning", | t | 115 | Using Distributed Acoustic Sensing and Semi-Supervised Learning |
116 | submitted to ", | ||||
116 | "relationships_as_object": [], | 117 | "relationships_as_object": [], | ||
117 | "relationships_as_subject": [], | 118 | "relationships_as_subject": [], | ||
118 | "resource_type": "dataset", | 119 | "resource_type": "dataset", | ||
119 | "resource_type_general": "dataset", | 120 | "resource_type_general": "dataset", | ||
120 | "resources": [ | 121 | "resources": [ | ||
121 | { | 122 | { | ||
122 | "cache_last_updated": null, | 123 | "cache_last_updated": null, | ||
123 | "cache_url": null, | 124 | "cache_url": null, | ||
124 | "created": "2024-09-12T08:44:35.168597", | 125 | "created": "2024-09-12T08:44:35.168597", | ||
125 | "description": "", | 126 | "description": "", | ||
126 | "doi": "", | 127 | "doi": "", | ||
127 | "format": "hdf5", | 128 | "format": "hdf5", | ||
128 | "hash": "", | 129 | "hash": "", | ||
129 | "id": "ef622098-ff73-46b6-a4da-a45ab2718f05", | 130 | "id": "ef622098-ff73-46b6-a4da-a45ab2718f05", | ||
130 | "last_modified": "2024-09-12T10:46:53.080000", | 131 | "last_modified": "2024-09-12T10:46:53.080000", | ||
131 | "metadata_modified": "2024-09-12T08:46:53.278393", | 132 | "metadata_modified": "2024-09-12T08:46:53.278393", | ||
132 | "mimetype": null, | 133 | "mimetype": null, | ||
133 | "mimetype_inner": null, | 134 | "mimetype_inner": null, | ||
134 | "name": "Data access", | 135 | "name": "Data access", | ||
135 | "package_id": "8ece0152-55ca-4547-8faf-99bfa56f6b03", | 136 | "package_id": "8ece0152-55ca-4547-8faf-99bfa56f6b03", | ||
136 | "position": 0, | 137 | "position": 0, | ||
137 | "resource_size": | 138 | "resource_size": | ||
138 | "{\"size_value\":\"160\",\"size_units\":\"gb\"}", | 139 | "{\"size_value\":\"160\",\"size_units\":\"gb\"}", | ||
139 | "resource_type": null, | 140 | "resource_type": null, | ||
140 | "restricted": | 141 | "restricted": | ||
141 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 142 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
142 | "size": null, | 143 | "size": null, | ||
143 | "state": "active", | 144 | "state": "active", | ||
144 | "url": | 145 | "url": | ||
145 | 2Fos.zhdk.cloud.switch.ch%2Fenvicloud%2F&prefix=doi%2Fenvidat.541%2F", | 146 | 2Fos.zhdk.cloud.switch.ch%2Fenvicloud%2F&prefix=doi%2Fenvidat.541%2F", | ||
146 | "url_type": null | 147 | "url_type": null | ||
147 | } | 148 | } | ||
148 | ], | 149 | ], | ||
149 | "spatial": | 150 | "spatial": | ||
150 | ],\"properties\":{\"name\":\"distributed-acoustic-sensing-brienz\"}}", | 151 | ],\"properties\":{\"name\":\"distributed-acoustic-sensing-brienz\"}}", | ||
151 | "state": "active", | 152 | "state": "active", | ||
152 | "subtitle": "", | 153 | "subtitle": "", | ||
153 | "tags": [ | 154 | "tags": [ | ||
154 | { | 155 | { | ||
155 | "display_name": "EARLY WARNING", | 156 | "display_name": "EARLY WARNING", | ||
156 | "id": "42ed5245-064b-4cee-8199-9cebe7d01f0d", | 157 | "id": "42ed5245-064b-4cee-8199-9cebe7d01f0d", | ||
157 | "name": "EARLY WARNING", | 158 | "name": "EARLY WARNING", | ||
158 | "state": "active", | 159 | "state": "active", | ||
159 | "vocabulary_id": null | 160 | "vocabulary_id": null | ||
160 | }, | 161 | }, | ||
161 | { | 162 | { | ||
162 | "display_name": "LANDSLIDE", | 163 | "display_name": "LANDSLIDE", | ||
163 | "id": "70dfc1e7-9c6e-485b-bad3-0b452264cf62", | 164 | "id": "70dfc1e7-9c6e-485b-bad3-0b452264cf62", | ||
164 | "name": "LANDSLIDE", | 165 | "name": "LANDSLIDE", | ||
165 | "state": "active", | 166 | "state": "active", | ||
166 | "vocabulary_id": null | 167 | "vocabulary_id": null | ||
167 | }, | 168 | }, | ||
168 | { | 169 | { | ||
169 | "display_name": "MACHINE LEARNING", | 170 | "display_name": "MACHINE LEARNING", | ||
170 | "id": "66c2084e-b683-47a2-878c-48f33c6e2a78", | 171 | "id": "66c2084e-b683-47a2-878c-48f33c6e2a78", | ||
171 | "name": "MACHINE LEARNING", | 172 | "name": "MACHINE LEARNING", | ||
172 | "state": "active", | 173 | "state": "active", | ||
173 | "vocabulary_id": null | 174 | "vocabulary_id": null | ||
174 | }, | 175 | }, | ||
175 | { | 176 | { | ||
176 | "display_name": "NATURAL HAZARD", | 177 | "display_name": "NATURAL HAZARD", | ||
177 | "id": "ca983795-2165-4117-bd6e-e034e7a677b5", | 178 | "id": "ca983795-2165-4117-bd6e-e034e7a677b5", | ||
178 | "name": "NATURAL HAZARD", | 179 | "name": "NATURAL HAZARD", | ||
179 | "state": "active", | 180 | "state": "active", | ||
180 | "vocabulary_id": null | 181 | "vocabulary_id": null | ||
181 | }, | 182 | }, | ||
182 | { | 183 | { | ||
183 | "display_name": "ROCKFALL", | 184 | "display_name": "ROCKFALL", | ||
184 | "id": "9097352d-c506-4009-9642-6a2991cf4a7d", | 185 | "id": "9097352d-c506-4009-9642-6a2991cf4a7d", | ||
185 | "name": "ROCKFALL", | 186 | "name": "ROCKFALL", | ||
186 | "state": "active", | 187 | "state": "active", | ||
187 | "vocabulary_id": null | 188 | "vocabulary_id": null | ||
188 | }, | 189 | }, | ||
189 | { | 190 | { | ||
190 | "display_name": "SEISMIC", | 191 | "display_name": "SEISMIC", | ||
191 | "id": "53006f9b-4fef-48a8-a1fc-6970fbad9c46", | 192 | "id": "53006f9b-4fef-48a8-a1fc-6970fbad9c46", | ||
192 | "name": "SEISMIC", | 193 | "name": "SEISMIC", | ||
193 | "state": "active", | 194 | "state": "active", | ||
194 | "vocabulary_id": null | 195 | "vocabulary_id": null | ||
195 | } | 196 | } | ||
196 | ], | 197 | ], | ||
197 | "title": "Distributed Acoustic Sensing Brienz", | 198 | "title": "Distributed Acoustic Sensing Brienz", | ||
198 | "type": "dataset", | 199 | "type": "dataset", | ||
199 | "url": null | 200 | "url": null | ||
200 | } | 201 | } |