f | { | f | { |
| "author": "[{\"given_name\": \"Tiziana\", \"name\": \"Koch\", | | "author": "[{\"given_name\": \"Tiziana\", \"name\": \"Koch\", |
| \"email\": \"tiziana.li@t-online.de\", \"data_credit\": [], | | \"email\": \"tiziana.li@t-online.de\", \"data_credit\": [], |
| \"identifier\": \"0000-0002-0195-4119\", \"affiliation\": \"Swiss | | \"identifier\": \"0000-0002-0195-4119\", \"affiliation\": \"Swiss |
| Federal Research Institute WSL and University of Zurich\"}, | | Federal Research Institute WSL and University of Zurich\"}, |
| {\"given_name\": \"Martina\", \"name\": \"Hobi\", \"email\": | | {\"given_name\": \"Martina\", \"name\": \"Hobi\", \"email\": |
| \"martina.hobi@wsl.ch\", \"data_credit\": [\"supervision\", | | \"martina.hobi@wsl.ch\", \"data_credit\": [\"supervision\", |
| \"publication\"], \"identifier\": \"\", \"affiliation\": \"Swiss | | \"publication\"], \"identifier\": \"\", \"affiliation\": \"Swiss |
| Federal Research Institute WSL, Z\\u00fcrcherstrasse 111, 8903 | | Federal Research Institute WSL, Z\\u00fcrcherstrasse 111, 8903 |
| Birmensdorf, Switzerland\"}, {\"given_name\": \"Felix\", \"name\": | | Birmensdorf, Switzerland\"}, {\"given_name\": \"Felix\", \"name\": |
| \"Morsdorf\", \"email\": \"felix.morsdorf@geo.uzh.ch\", | | \"Morsdorf\", \"email\": \"felix.morsdorf@geo.uzh.ch\", |
| \"data_credit\": [\"publication\", \"supervision\"], \"identifier\": | | \"data_credit\": [\"publication\", \"supervision\"], \"identifier\": |
| \"\", \"affiliation\": \"University of Zurich\"}, {\"given_name\": | | \"\", \"affiliation\": \"University of Zurich\"}, {\"given_name\": |
| \"Lars\", \"name\": \"Waser\", \"email\": \"lars.waser@wsl.ch\", | | \"Lars\", \"name\": \"Waser\", \"email\": \"lars.waser@wsl.ch\", |
| \"data_credit\": [\"supervision\", \"publication\"], \"identifier\": | | \"data_credit\": [\"supervision\", \"publication\"], \"identifier\": |
| \"D-5937-2011\", \"affiliation\": \"Swiss Federal Institute for | | \"D-5937-2011\", \"affiliation\": \"Swiss Federal Institute for |
| Forest, Snow and Landscape Research WSL \"}]", | | Forest, Snow and Landscape Research WSL \"}]", |
| "author_email": null, | | "author_email": null, |
| "creator_user_id": "06333ba0-47fe-41e8-9b65-5945024eca8a", | | "creator_user_id": "06333ba0-47fe-41e8-9b65-5945024eca8a", |
| "date": | | "date": |
| :\"collected\",\"date\":\"2020-01-01\",\"end_date\":\"2020-12-31\"}]", | | :\"collected\",\"date\":\"2020-01-01\",\"end_date\":\"2020-12-31\"}]", |
| "doi": "10.16904/envidat.506", | | "doi": "10.16904/envidat.506", |
| "funding": "[{\"institution\":\"Swiss National Science | | "funding": "[{\"institution\":\"Swiss National Science |
| tion\",\"grant_number\":\"200021_184605\",\"institution_url\":\"\"}]", | | tion\",\"grant_number\":\"200021_184605\",\"institution_url\":\"\"}]", |
| "groups": [], | | "groups": [], |
| "id": "bf5a19da-7b55-4149-8293-08fd0af29969", | | "id": "bf5a19da-7b55-4149-8293-08fd0af29969", |
| "isopen": true, | | "isopen": true, |
| "license_id": "cc-by-sa", | | "license_id": "cc-by-sa", |
| "license_title": "Creative Commons Attribution Share-Alike | | "license_title": "Creative Commons Attribution Share-Alike |
| (CC-BY-SA)", | | (CC-BY-SA)", |
| "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", |
| "maintainer": | | "maintainer": |
| "{\"email\":\"tiziana.li@t-online.de\",\"given_name\":\"Tiziana | | "{\"email\":\"tiziana.li@t-online.de\",\"given_name\":\"Tiziana |
| Li\",\"name\":\"Koch\"}", | | Li\",\"name\":\"Koch\"}", |
| "maintainer_email": null, | | "maintainer_email": null, |
| "metadata_created": "2024-04-18T12:25:50.928090", | | "metadata_created": "2024-04-18T12:25:50.928090", |
n | "metadata_modified": "2024-04-18T14:12:45.618244", | n | "metadata_modified": "2024-04-24T13:36:33.791875", |
| "name": "tree-species-map-of-switzerland", | | "name": "tree-species-map-of-switzerland", |
| "notes": "\n# Dominant tree species map of Switzerland\nWe created a | | "notes": "\n# Dominant tree species map of Switzerland\nWe created a |
| tree species map of Switzerland for the dominant tree species in the | | tree species map of Switzerland for the dominant tree species in the |
| forested areas. The spatial resolution of the map is 10 m and the | | forested areas. The spatial resolution of the map is 10 m and the |
| coordinate system is ETRS89-extended / LAEA Europe (EPSG 3035). The | | coordinate system is ETRS89-extended / LAEA Europe (EPSG 3035). The |
| map comprises Sentinel-2 index time series from the year 2020, a | | map comprises Sentinel-2 index time series from the year 2020, a |
| digital elevation model and species reference data from the Swiss | | digital elevation model and species reference data from the Swiss |
| National Forest Inventory. The map is available as raster (.tif) or | | National Forest Inventory. The map is available as raster (.tif) or |
t | vector dataset (.gpkg)\nIn total, the following 15 species were | t | vector dataset (.gpkg). \n**Access will be granted upon |
| mapped: \n*Abies alba*, *Acer pseudoplatanus*, *Alnus glutinosa*, | | request.**\n\nIn total, the following 15 species were mapped: \n*Abies |
| *Alnus incana*, *Betula pendula*, *Castanea sativa*, *Fagus | | alba*, *Acer pseudoplatanus*, *Alnus glutinosa*, *Alnus incana*, |
| sylvatica*, *Fraxinus excelsior*, *Picea abies*, *Pinus cembra*, | | *Betula pendula*, *Castanea sativa*, *Fagus sylvatica*, *Fraxinus |
| *Pinus mugo arborea*, *Pinus sylvestris*, *Quercus petraea*, *Quercus | | excelsior*, *Picea abies*, *Pinus cembra*, *Pinus mugo arborea*, |
| robur*, *Sorbus aucuparia*. \nAccess will be granted upon | | *Pinus sylvestris*, *Quercus petraea*, *Quercus robur*, *Sorbus |
| request.\n\n<br/><br/>\n# Approach\n<br/><br/>\n### Data\n- Swiss | | aucuparia*. \n\n\n<br/><br/>\n# Approach\n<br/><br/>\n### Data\n- |
| National Forest Inventory Data (stand species with > 60 % dominance in | | Swiss National Forest Inventory Data (stand species with > 60 % |
| upper canopy; on at least more than 9 plots dominant)\n- Sentinel-2 | | dominance in upper canopy; on at least more than 9 plots dominant)\n- |
| time series (2020, Indices: CCI, CIRE, NDMI, EVI, NDVI)\n- Digital | | Sentinel-2 time series (2020, Indices: CCI, CIRE, NDMI, EVI, NDVI)\n- |
| elevation model (DEM) (swissalti3d, 5 m)\n- Biogeographical regions | | Digital elevation model (DEM) (swissalti3d, 5 m)\n- Biogeographical |
| (Federal Office for the Environment FOEN)\n- Forest mask 2017 | | regions (Federal Office for the Environment FOEN)\n- Forest mask 2017 |
| (Approach: Waser et al., 2015)\n\n<br/><br/>\n### Modeling | | (Approach: Waser et al., 2015)\n\n<br/><br/>\n### Modeling |
| approach\nWe identified the most meaningful variables that led to | | approach\nWe identified the most meaningful variables that led to |
| separation of the respective groups by using random forest models with | | separation of the respective groups by using random forest models with |
| a forward feature selection (Meyer et al., 2018; Ververidis & | | a forward feature selection (Meyer et al., 2018; Ververidis & |
| Kotropoulos, 2005). In this approach, the final random forest model is | | Kotropoulos, 2005). In this approach, the final random forest model is |
| solely built from the selected meaningful variables. By identifying | | solely built from the selected meaningful variables. By identifying |
| meaningful variables, we can determine which variables might influence | | meaningful variables, we can determine which variables might influence |
| the grouping. Further, to avoid overfitting and overly optimistic | | the grouping. Further, to avoid overfitting and overly optimistic |
| results, we applied 10-fold spatial cross-validation and put all | | results, we applied 10-fold spatial cross-validation and put all |
| pixels from a plot in the same spatial fold.\nThe modeling was | | pixels from a plot in the same spatial fold.\nThe modeling was |
| realized using the CAST package in R (Meyer et al., 2022), based on | | realized using the CAST package in R (Meyer et al., 2022), based on |
| the well-known caret package (Kuhn, 2022). We used the ranger package | | the well-known caret package (Kuhn, 2022). We used the ranger package |
| in R (Wright & Ziegler, 2017) to implement the random forest models, | | in R (Wright & Ziegler, 2017) to implement the random forest models, |
| due to its short computation time.\n<br/><br/>\n### Training data for | | due to its short computation time.\n<br/><br/>\n### Training data for |
| modeling\n- 295 Sentinel-2, DEM & Biogeographical variables\n- 10525 | | modeling\n- 295 Sentinel-2, DEM & Biogeographical variables\n- 10525 |
| tree species pixels\n\n<br/><br/>\n\n### Selected variables for final | | tree species pixels\n\n<br/><br/>\n\n### Selected variables for final |
| model\n1. EVI of 2020.05.16\n2. NDMI of 2020.03.12\n3. CIRE of | | model\n1. EVI of 2020.05.16\n2. NDMI of 2020.03.12\n3. CIRE of |
| 2020.04.16\n4. NDMI of 2020.07.05\n5. CCI of 2020.05.11\n6. dem\n7. | | 2020.04.16\n4. NDMI of 2020.07.05\n5. CCI of 2020.05.11\n6. dem\n7. |
| CCI of 2020.08.14\n8. NDMI of 2020.08.24\n9. CCI of 2020.12.22\n10. | | CCI of 2020.08.14\n8. NDMI of 2020.08.24\n9. CCI of 2020.12.22\n10. |
| NDMI of 2020.04.21\n11. NDMI of 2020.11.17\n12. NDMI of | | NDMI of 2020.04.21\n11. NDMI of 2020.11.17\n12. NDMI of |
| 2020.08.09\n13. CIRE of 2020.03.22\n14. CIRE of 2020.08.09\n14. CCI of | | 2020.08.09\n13. CIRE of 2020.03.22\n14. CIRE of 2020.08.09\n14. CCI of |
| 2020.11.02\n15. CIRE of 2020.06.10\n\n<br/><br/>\t\n### Overall | | 2020.11.02\n15. CIRE of 2020.06.10\n\n<br/><br/>\t\n### Overall |
| Accuracy of final model\n- 0.759\n\n<br/><br/>\n\n### Nationwide | | Accuracy of final model\n- 0.759\n\n<br/><br/>\n\n### Nationwide |
| prediction\n- Predicted throughout forest mask 2017 (Approach: Waser | | prediction\n- Predicted throughout forest mask 2017 (Approach: Waser |
| et al., 2015) \n- Not applied on incomplete Sentinel-2 time series | | et al., 2015) \n- Not applied on incomplete Sentinel-2 time series |
| (own category in final map: incomplete_ts)\n- Applied the Area of | | (own category in final map: incomplete_ts)\n- Applied the Area of |
| Applicability (Meyer 2022) to sort out pixels outside of the feature | | Applicability (Meyer 2022) to sort out pixels outside of the feature |
| space; basically where the model had not the same values for pixels as | | space; basically where the model had not the same values for pixels as |
| in the available training data\n\n\n<br/><br/>\n<br/><br/>\n## *Be | | in the available training data\n\n\n<br/><br/>\n<br/><br/>\n## *Be |
| aware that the map is only validated with the training data itself, an | | aware that the map is only validated with the training data itself, an |
| independent validation with other data sources remains missing* | | independent validation with other data sources remains missing* |
| \n\n<br/><br/>\n<br/><br/>\n\n# References\n- Kuhn, M. (2022). | | \n\n<br/><br/>\n<br/><br/>\n\n# References\n- Kuhn, M. (2022). |
| Classification and Regression Training. 6.0-93.\n\n- Meyer, H., | | Classification and Regression Training. 6.0-93.\n\n- Meyer, H., |
| Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). *Improving | | Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). *Improving |
| performance of spatio-temporal machine learning models using forward | | performance of spatio-temporal machine learning models using forward |
| feature selection and target-oriented validation*. Environmental | | feature selection and target-oriented validation*. Environmental |
| Modelling and Software, 101, 1-9. | | Modelling and Software, 101, 1-9. |
| https://doi.org/10.1016/j.envsoft.2017.12.001 \n\n- Meyer, H., | | https://doi.org/10.1016/j.envsoft.2017.12.001 \n\n- Meyer, H., |
| Mil\u00e0, C., & Ludwig, M. (2022). *CAST: 'caret' Applications for | | Mil\u00e0, C., & Ludwig, M. (2022). *CAST: 'caret' Applications for |
| Spatial-Temporal Models*. 0.7.0.\n\n- Ververidis, D., & Kotropoulos, | | Spatial-Temporal Models*. 0.7.0.\n\n- Ververidis, D., & Kotropoulos, |
| C. (2005). *Sequential forward feature selection with low | | C. (2005). *Sequential forward feature selection with low |
| computational cost*. 2005 13th European Signal Processing Conference. | | computational cost*. 2005 13th European Signal Processing Conference. |
| \n\n- Waser, L., Fischer, C.,Wang, Z., & Ginzler, C. (2015). | | \n\n- Waser, L., Fischer, C.,Wang, Z., & Ginzler, C. (2015). |
| *Wall-to-Wall Forest Mapping Based on Digital Surface Models from | | *Wall-to-Wall Forest Mapping Based on Digital Surface Models from |
| Image-Based Point Clouds and a NFI Forest Definition*. Forests, 6, 12, | | Image-Based Point Clouds and a NFI Forest Definition*. Forests, 6, 12, |
| 4510\u20134528.\n\n- Wright, M. N., & Ziegler, A. (2017). *ranger: A | | 4510\u20134528.\n\n- Wright, M. N., & Ziegler, A. (2017). *ranger: A |
| Fast Implementation of Random Forests for High Dimensional Data in C++ | | Fast Implementation of Random Forests for High Dimensional Data in C++ |
| and R*. Journal of Statistical Software, 77(1), 1-17. | | and R*. Journal of Statistical Software, 77(1), 1-17. |
| https://doi.org/doi:10.18637/jss.v077.i01 ", | | https://doi.org/doi:10.18637/jss.v077.i01 ", |
| "num_resources": 1, | | "num_resources": 1, |
| "num_tags": 5, | | "num_tags": 5, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2017-04-20T16:51:21.920128", | | "created": "2017-04-20T16:51:21.920128", |
| "description": "We develop and apply comprehensive and robust | | "description": "We develop and apply comprehensive and robust |
| methods to extract and classify natural objects from continuous and | | methods to extract and classify natural objects from continuous and |
| discrete raster datasets. Relevant features are acquired to describe | | discrete raster datasets. Relevant features are acquired to describe |
| changes in landscape and land resources at different levels using | | changes in landscape and land resources at different levels using |
| image data. Mathematical-statistical methods are adopted for automatic | | image data. Mathematical-statistical methods are adopted for automatic |
| detection and description of image objects. Thus we contribute | | detection and description of image objects. Thus we contribute |
| concepts, methods and data to describe/detect area wide changes and | | concepts, methods and data to describe/detect area wide changes and |
| processes in the resources of landscape.\r\n\r\n### Tasks and main | | processes in the resources of landscape.\r\n\r\n### Tasks and main |
| research\r\n\r\n* Development and application of methods to extract | | research\r\n\r\n* Development and application of methods to extract |
| natural objects from continuous data.\r\n* Development of methods for | | natural objects from continuous data.\r\n* Development of methods for |
| a comprehensive description of natural and anthropogenetic boundaries | | a comprehensive description of natural and anthropogenetic boundaries |
| in continuous pattern (e.g. map signatures, vegetation transition, | | in continuous pattern (e.g. map signatures, vegetation transition, |
| forest borders).\r\n* Development and application of methods to | | forest borders).\r\n* Development and application of methods to |
| extract 3D-information from remotely sensed data for description of | | extract 3D-information from remotely sensed data for description of |
| natural structures and changes. The main focus lies on wood and its | | natural structures and changes. The main focus lies on wood and its |
| embedding/interaction within/with the landscape.\r\n* Conception and | | embedding/interaction within/with the landscape.\r\n* Conception and |
| development of data acquisition based on high resolution remote | | development of data acquisition based on high resolution remote |
| sensing data.\r\n* Conception, development and maintenance of the | | sensing data.\r\n* Conception, development and maintenance of the |
| software interface in area wide data acquisition using airborne remote | | software interface in area wide data acquisition using airborne remote |
| sensing data.\r\n* Scientific expert advice and support in the fields | | sensing data.\r\n* Scientific expert advice and support in the fields |
| of photogrammetry and survey at WSL. Maintenance, enhancements and | | of photogrammetry and survey at WSL. Maintenance, enhancements and |
| future development in these specific fields.\r\n* Adequate | | future development in these specific fields.\r\n* Adequate |
| presentation of scientific results on national level and in noted | | presentation of scientific results on national level and in noted |
| international journals and at international | | international journals and at international |
| congresses/workshops/symposia.\r\n\r\n__Further information__: | | congresses/workshops/symposia.\r\n\r\n__Further information__: |
| l/organization/research-units/landscape-dynamics/remote-sensing.html", | | l/organization/research-units/landscape-dynamics/remote-sensing.html", |
| "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | | "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", |
| "image_url": "2018-07-10-102816.481589LogoWSL.svg", | | "image_url": "2018-07-10-102816.481589LogoWSL.svg", |
| "is_organization": true, | | "is_organization": true, |
| "name": "remote-sensing", | | "name": "remote-sensing", |
| "state": "active", | | "state": "active", |
| "title": "Remote Sensing", | | "title": "Remote Sensing", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | | "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", |
| "private": false, | | "private": false, |
| "publication": | | "publication": |
| "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", | | "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", |
| "publication_state": "published", | | "publication_state": "published", |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
| "resource_type": "dataset", | | "resource_type": "dataset", |
| "resource_type_general": "dataset", | | "resource_type_general": "dataset", |
| "resources": [ | | "resources": [ |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2024-04-18T12:29:04.782844", | | "created": "2024-04-18T12:29:04.782844", |
| "description": "Image of the tree species map", | | "description": "Image of the tree species map", |
| "doi": "", | | "doi": "", |
| "format": "PNG", | | "format": "PNG", |
| "hash": "", | | "hash": "", |
| "id": "4645f173-dded-4fff-9fb0-d8513ea8be6f", | | "id": "4645f173-dded-4fff-9fb0-d8513ea8be6f", |
| "last_modified": "2024-04-18T14:34:06.462000", | | "last_modified": "2024-04-18T14:34:06.462000", |
| "metadata_modified": "2024-04-18T12:34:07.279920", | | "metadata_modified": "2024-04-18T12:34:07.279920", |
| "mimetype": "image/png", | | "mimetype": "image/png", |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "map.png", | | "name": "map.png", |
| "package_id": "bf5a19da-7b55-4149-8293-08fd0af29969", | | "package_id": "bf5a19da-7b55-4149-8293-08fd0af29969", |
| "position": 0, | | "position": 0, |
| "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", |
| "resource_type": null, | | "resource_type": null, |
| "restricted": | | "restricted": |
| {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", |
| "size": 5638141, | | "size": 5638141, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| 29969/resource/4645f173-dded-4fff-9fb0-d8513ea8be6f/download/map.png", | | 29969/resource/4645f173-dded-4fff-9fb0-d8513ea8be6f/download/map.png", |
| "url_type": "upload" | | "url_type": "upload" |
| } | | } |
| ], | | ], |
| "spatial": | | "spatial": |
| 838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}]}", | | 838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}]}", |
| "state": "active", | | "state": "active", |
| "subtitle": "", | | "subtitle": "", |
| "tags": [ | | "tags": [ |
| { | | { |
| "display_name": "FOREST", | | "display_name": "FOREST", |
| "id": "90cd0d8f-8df0-4b78-ac11-6e38c2a22106", | | "id": "90cd0d8f-8df0-4b78-ac11-6e38c2a22106", |
| "name": "FOREST", | | "name": "FOREST", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "MAP", | | "display_name": "MAP", |
| "id": "10a67a95-a99d-4c87-b929-3439a5979f4f", | | "id": "10a67a95-a99d-4c87-b929-3439a5979f4f", |
| "name": "MAP", | | "name": "MAP", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "REMOTE SENSING", | | "display_name": "REMOTE SENSING", |
| "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", | | "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", |
| "name": "REMOTE SENSING", | | "name": "REMOTE SENSING", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "SWITZERLAND", | | "display_name": "SWITZERLAND", |
| "id": "97ac3564-bb88-46ad-9fe4-b7d606e0aa3a", | | "id": "97ac3564-bb88-46ad-9fe4-b7d606e0aa3a", |
| "name": "SWITZERLAND", | | "name": "SWITZERLAND", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "TREE SPECIES", | | "display_name": "TREE SPECIES", |
| "id": "f02ee441-6d4d-4a02-888e-31588461d7c9", | | "id": "f02ee441-6d4d-4a02-888e-31588461d7c9", |
| "name": "TREE SPECIES", | | "name": "TREE SPECIES", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
| "title": "Tree species map of Switzerland", | | "title": "Tree species map of Switzerland", |
| "type": "dataset", | | "type": "dataset", |
| "url": null | | "url": null |
| } | | } |