f | { | f | { |
n | "author": "[{\"given_name\": \"Tiziana\", \"name\": \"Koch\", | n | "author": "[{\"affiliation\": \"WSL\", \"affiliation_02\": \"\", |
| | | \"affiliation_03\": \"\", \"data_credit\": [\"collection\", |
| | | \"validation\", \"curation\", \"software\", \"publication\"], |
| \"email\": \"tiziana.li@t-online.de\", \"data_credit\": [\"software\", | | \"email\": \"tiziana.li@t-online.de\", \"given_name\": \"Tiziana\", |
| \"curation\", \"collection\", \"validation\", \"publication\"]}, | | \"identifier\": \"\", \"name\": \"Koch\"}, {\"affiliation\": \"WSL\", |
| {\"given_name\": \"Dominique\", \"name\": \"Weber\", \"email\": | | \"affiliation_02\": \"\", \"affiliation_03\": \"\", \"data_credit\": |
| \"dominique.weber@wsl.ch\", \"data_credit\": [\"supervision\", | | [\"validation\", \"publication\", \"supervision\"], \"email\": |
| \"validation\", \"publication\"], \"identifier\": | | \"dominique.weber@wsl.ch\", \"given_name\": \"Dominique\", |
| \"0000-0002-0402-9682\", \"affiliation\": \"WSL\"}, {\"given_name\": | | \"identifier\": \"0000-0002-0402-9682\", \"name\": \"Weber\"}, |
| \"Lars\", \"name\": \"Waser\", \"email\": \"lars.waser@wsl.ch\", | | {\"affiliation\": \"Swiss Federal Institute for Forest, Snow and |
| \"data_credit\": [\"supervision\", \"publication\"], \"identifier\": | | Landscape Research WSL \", \"affiliation_02\": \"\", |
| \"D-5937-2011\", \"affiliation\": \"Swiss Federal Institute for | | \"affiliation_03\": \"\", \"data_credit\": [\"publication\", |
| Forest, Snow and Landscape Research WSL \"}]", | | \"supervision\"], \"email\": \"lars.waser@wsl.ch\", \"given_name\": |
| | | \"Lars\", \"identifier\": \"D-5937-2011\", \"name\": \"Waser\"}]", |
| "author_email": null, | | "author_email": null, |
| "creator_user_id": "06333ba0-47fe-41e8-9b65-5945024eca8a", | | "creator_user_id": "06333ba0-47fe-41e8-9b65-5945024eca8a", |
n | "date": | n | "date": "[{\"date\": \"2017-01-01\", \"date_type\": \"created\", |
| :\"collected\",\"date\":\"2017-01-01\",\"end_date\":\"2023-12-31\"}]", | | \"end_date\": \"2023-12-31\"}, {\"date\": \"2017-01-01\", |
| | | \"date_type\": \"collected\", \"end_date\": \"2023-12-31\"}]", |
| "doi": "10.16904/envidat.511", | | "doi": "10.16904/envidat.511", |
n | "funding": "[{\"institution\":\"Swiss National Science | n | |
| tion\",\"grant_number\":\"200021_184605\",\"institution_url\":\"\"}]", | | "funding": "[{\"grant_number\": \"200021_184605\", \"institution\": |
| | | \"Swiss National Science Foundation\", \"institution_url\": \"\"}]", |
| "groups": [], | | "groups": [], |
| "id": "633ffbf5-756f-4735-af10-909a3b09c7cb", | | "id": "633ffbf5-756f-4735-af10-909a3b09c7cb", |
| "isopen": true, | | "isopen": true, |
n | | n | "language": "en", |
| "license_id": "cc-by-sa", | | "license_id": "cc-by-sa", |
| "license_title": "Creative Commons Attribution Share-Alike | | "license_title": "Creative Commons Attribution Share-Alike |
| (CC-BY-SA)", | | (CC-BY-SA)", |
| "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", |
n | "maintainer": | n | "maintainer": "{\"affiliation\": \"\", \"email\": |
| ziana.li@t-online.de\",\"given_name\":\"Tiziana\",\"name\":\"Koch\"}", | | \"tiziana.li@t-online.de\", \"given_name\": \"Tiziana\", |
| | | \"identifier\": \"\", \"name\": \"Koch\"}", |
| "maintainer_email": null, | | "maintainer_email": null, |
| "metadata_created": "2024-05-23T11:13:30.786593", | | "metadata_created": "2024-05-23T11:13:30.786593", |
n | "metadata_modified": "2024-06-10T15:56:15.016505", | n | "metadata_modified": "2024-07-09T06:01:31.501751", |
| "name": "sentinel-2-time-series-of-switzerland", | | "name": "sentinel-2-time-series-of-switzerland", |
n | "notes": "# Sentinel-2 time series of Switzerland \n\nWe processed | n | "notes": "We processed Sentinel-2 image time series from 2017 to |
| Sentinel-2 image time series from 2017 to 2023 for Switzerland with | | 2023 for Switzerland with the Software FORCE (Frantz 2019) on the |
| the Software FORCE (Frantz 2019) on the basis of [Sentinel-2 | | basis of [Sentinel-2 |
| ges](https://envidat.ch/#/metadata/sentinel-2-imagery-of-switzerland). | | ges](https://envidat.ch/#/metadata/sentinel-2-imagery-of-switzerland). |
| The respective parameter files can be found here: | | The respective parameter files can be found here: |
| [Github](https://github.com/TLKoch/Sentinel-2_CH). All the image time | | [Github](https://github.com/TLKoch/Sentinel-2_CH). All the image time |
| series consist of several TB and therefore access will be granted upon | | series consist of several TB and therefore access will be granted upon |
n | request. \nThe available bands (in spatial reference system EPSG 3035) | n | request. \r\nThe available bands (in spatial reference system EPSG |
| are the following:\nRed, Green, Blue, NIR, Red-Edge-1, Red-Edge-2, | | 3035) are the following:\r\nRed, Green, Blue, NIR, Red-Edge-1, |
| Red-Edge-3, SWIR-1, SWIR-2\nThe available indices (in spatial | | Red-Edge-2, Red-Edge-3, SWIR-1, SWIR-2\r\nThe available indices (in |
| reference system EPSG 3035) are the following:\nCCI, CIRE, NDWI/NDMI, | | spatial reference system EPSG 3035) are the following:\r\nCCI, CIRE, |
| NDVI, EVI\nFurther indices might be provided upon request.\n\n\n### | | NDWI/NDMI, NDVI, EVI\r\nFurther indices might be provided upon |
| Processing\nOn the basis of processed Sentinel-2 images for the 14 | | request.\r\n\r\n\r\n### Processing\r\nOn the basis of processed |
| Sentinel-2 tiles covering Switzerland (T31TGN, T32TLT, T32TMT, T32UMU, | | Sentinel-2 images for the 14 Sentinel-2 tiles covering Switzerland |
| T32TNT, T32TPT, T31TGM, T32TLS, T32TMS, T32TNS, T32TPS, T32TLR, | | (T31TGN, T32TLT, T32TMT, T32UMU, T32TNT, T32TPT, T31TGM, T32TLS, |
| T32TMR, T32TNR), we processed the image time series further with FORCE | | T32TMS, T32TNS, T32TPS, T32TLR, T32TMR, T32TNR), we processed the |
| v. 3.7.8-12.\nWe generated interpolated Sentinel-2 time series with a | | image time series further with FORCE v. 3.7.8-12.\r\nWe generated |
| | | interpolated Sentinel-2 time series with a 5-day interval, |
| 5-day interval, corresponding to the theoretical revisit time of the | | corresponding to the theoretical revisit time of the Sentinel-2 |
| Sentinel-2 satellites. It's important to note that the 5-day time | | satellites. It's important to note that the 5-day time series consist |
| series consist of interpolated and smoothed composites, not the | | of interpolated and smoothed composites, not the original images. We |
| original images. We used the radial basis convolutional filtering | | used the radial basis convolutional filtering (RBF) available in the |
| (RBF) available in the FORCE time series analysis (TSA) submodule | | FORCE time series analysis (TSA) submodule (Schwieder et al. 2016). |
| (Schwieder et al. 2016). The RBF is similar to a spatial moving window | | The RBF is similar to a spatial moving window average approach over |
| average approach over time (Schwieder et al. 2016). We applied kernel | | time (Schwieder et al. 2016). We applied kernel width values of 10, |
| width values of 10, 20, 30, and 50 days. We spectrally adjusted all | | 20, 30, and 50 days. We spectrally adjusted all the images to match |
| the images to match Sentinel-2A, and we removed curve outliers and | | Sentinel-2A, and we removed curve outliers and pixels that failed the |
| pixels that failed the quality checks for clouds and their shadows, | | quality checks for clouds and their shadows, snow, saturation, and |
| snow, saturation, and limited illumination. The processed image time | | limited illumination. The processed image time series are available in |
| series are available in tiles of 30 by 30 km. \n\n\n### Example | | tiles of 30 by 30 km. \r\n\r\n\r\n### Example images\r\nUploaded is |
| images\nUploaded is an example of the index EVI for one of the | | an example of the index EVI for one of the generated 30 by 30 km tiles |
| generated 30 by 30 km tiles located around the city of Z\u00fcrich. | | located around the city of Z\u00fcrich. The values are multiplied by |
| The values are multiplied by 10.000. The time series spans the month | | 10.000. The time series spans the month of July from 2018.\r\n\r\n", |
| of July from 2018.\n\n\n\n\n### References\n*D. Frantz, | | |
| \u201cFORCE\u2014Landsat + Sentinel-2 Analysis Ready Data | | |
| and\nBeyond,\u201d Remote Sensing, vol. 11, no. 9, 2019.*\n\n*M. | | |
| Schwieder, P. J. Leit \u0303ao, M. M. da Cunha Bustamante, L. | | |
| G.\nFerreira, A. Rabe, and P. Hostert, \u201cMapping Brazilian savanna | | |
| vegetation\ngradients with Landsat time series,\u201d International | | |
| Journal of Applied\nEarth Observation and Geoinformation, vol. 52, pp. | | |
| 361\u2013370, 2016.*", | | |
| "num_resources": 1, | | "num_resources": 1, |
| "num_tags": 6, | | "num_tags": 6, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2017-04-20T16:51:21.920128", | | "created": "2017-04-20T16:51:21.920128", |
| "description": "We develop and apply comprehensive and robust | | "description": "We develop and apply comprehensive and robust |
| methods to extract and classify natural objects from continuous and | | methods to extract and classify natural objects from continuous and |
| discrete raster datasets. Relevant features are acquired to describe | | discrete raster datasets. Relevant features are acquired to describe |
| changes in landscape and land resources at different levels using | | changes in landscape and land resources at different levels using |
| image data. Mathematical-statistical methods are adopted for automatic | | image data. Mathematical-statistical methods are adopted for automatic |
| detection and description of image objects. Thus we contribute | | detection and description of image objects. Thus we contribute |
| concepts, methods and data to describe/detect area wide changes and | | concepts, methods and data to describe/detect area wide changes and |
| processes in the resources of landscape.\r\n\r\n### Tasks and main | | processes in the resources of landscape.\r\n\r\n### Tasks and main |
| research\r\n\r\n* Development and application of methods to extract | | research\r\n\r\n* Development and application of methods to extract |
| natural objects from continuous data.\r\n* Development of methods for | | natural objects from continuous data.\r\n* Development of methods for |
| a comprehensive description of natural and anthropogenetic boundaries | | a comprehensive description of natural and anthropogenetic boundaries |
| in continuous pattern (e.g. map signatures, vegetation transition, | | in continuous pattern (e.g. map signatures, vegetation transition, |
| forest borders).\r\n* Development and application of methods to | | forest borders).\r\n* Development and application of methods to |
| extract 3D-information from remotely sensed data for description of | | extract 3D-information from remotely sensed data for description of |
| natural structures and changes. The main focus lies on wood and its | | natural structures and changes. The main focus lies on wood and its |
| embedding/interaction within/with the landscape.\r\n* Conception and | | embedding/interaction within/with the landscape.\r\n* Conception and |
| development of data acquisition based on high resolution remote | | development of data acquisition based on high resolution remote |
| sensing data.\r\n* Conception, development and maintenance of the | | sensing data.\r\n* Conception, development and maintenance of the |
| software interface in area wide data acquisition using airborne remote | | software interface in area wide data acquisition using airborne remote |
| sensing data.\r\n* Scientific expert advice and support in the fields | | sensing data.\r\n* Scientific expert advice and support in the fields |
| of photogrammetry and survey at WSL. Maintenance, enhancements and | | of photogrammetry and survey at WSL. Maintenance, enhancements and |
| future development in these specific fields.\r\n* Adequate | | future development in these specific fields.\r\n* Adequate |
| presentation of scientific results on national level and in noted | | presentation of scientific results on national level and in noted |
| international journals and at international | | international journals and at international |
| congresses/workshops/symposia.\r\n\r\n__Further information__: | | congresses/workshops/symposia.\r\n\r\n__Further information__: |
| l/organization/research-units/landscape-dynamics/remote-sensing.html", | | l/organization/research-units/landscape-dynamics/remote-sensing.html", |
| "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | | "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", |
| "image_url": "2018-07-10-102816.481589LogoWSL.svg", | | "image_url": "2018-07-10-102816.481589LogoWSL.svg", |
| "is_organization": true, | | "is_organization": true, |
| "name": "remote-sensing", | | "name": "remote-sensing", |
| "state": "active", | | "state": "active", |
| "title": "Remote Sensing", | | "title": "Remote Sensing", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | | "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", |
| "private": false, | | "private": false, |
n | "publication": | n | "publication": "{\"publication_year\": \"2024\", \"publisher\": |
| "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", | | \"EnviDat\"}", |
| "publication_state": "published", | | "publication_state": "published", |
| "related_datasets": | | "related_datasets": |
n | /www.envidat.ch/#/metadata/sentinel-2-imagery-of-switzerland\n\n\n\n", | n | idat.ch/#/metadata/sentinel-2-imagery-of-switzerland\r\n\r\n\r\n\r\n", |
| | | "related_publications": " * D. Frantz, \u201cFORCE\u2014Landsat + |
| | | Sentinel-2 Analysis Ready Data and\r\nBeyond,\u201d Remote Sensing, |
| | | vol. 11, no. 9, 2019.\r\n\r\n * M. Schwieder, P. J. Leit \u0303ao, M. |
| | | M. da Cunha Bustamante, L. G.\r\nFerreira, A. Rabe, and P. Hostert, |
| | | \u201cMapping Brazilian savanna vegetation\r\ngradients with Landsat |
| | | time series,\u201d International Journal of Applied\r\nEarth |
| | | Observation and Geoinformation, vol. 52, pp. 361\u2013370, 2016.", |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
| "resource_type": "dataset", | | "resource_type": "dataset", |
| "resource_type_general": "dataset", | | "resource_type_general": "dataset", |
| "resources": [ | | "resources": [ |
| { | | { |
| "cache_last_updated": null, | | "cache_last_updated": null, |
| "cache_url": null, | | "cache_url": null, |
| "created": "2024-05-23T11:13:41.543965", | | "created": "2024-05-23T11:13:41.543965", |
| "description": "", | | "description": "", |
| "doi": "", | | "doi": "", |
| "format": "tif", | | "format": "tif", |
| "hash": "", | | "hash": "", |
| "id": "959bf57a-1723-4eea-ad89-3c42243ca510", | | "id": "959bf57a-1723-4eea-ad89-3c42243ca510", |
| "last_modified": null, | | "last_modified": null, |
| "metadata_modified": "2024-05-23T11:13:41.532869", | | "metadata_modified": "2024-05-23T11:13:41.532869", |
| "mimetype": "image/tiff", | | "mimetype": "image/tiff", |
| "mimetype_inner": null, | | "mimetype_inner": null, |
| "name": "EVI_time_series_201807_example.tif", | | "name": "EVI_time_series_201807_example.tif", |
| "package_id": "633ffbf5-756f-4735-af10-909a3b09c7cb", | | "package_id": "633ffbf5-756f-4735-af10-909a3b09c7cb", |
| "position": 0, | | "position": 0, |
| "resource_size": "{\"size_value\":\"\",\"size_units\":\"kb\"}", | | "resource_size": "{\"size_value\":\"\",\"size_units\":\"kb\"}", |
| "resource_type": null, | | "resource_type": null, |
| "restricted": | | "restricted": |
| {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", |
| "size": 139814053, | | "size": 139814053, |
| "state": "active", | | "state": "active", |
| "url": | | "url": |
| 3-4eea-ad89-3c42243ca510/download/evi_time_series_201807_example.tif", | | 3-4eea-ad89-3c42243ca510/download/evi_time_series_201807_example.tif", |
| "url_type": "upload" | | "url_type": "upload" |
| } | | } |
| ], | | ], |
| "spatial": | | "spatial": |
| 838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}]}", | | 838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}]}", |
n | | n | "spatial_info": "Switzerland", |
| "state": "active", | | "state": "active", |
| "subtitle": "", | | "subtitle": "", |
| "tags": [ | | "tags": [ |
| { | | { |
| "display_name": "FORCE", | | "display_name": "FORCE", |
| "id": "6a4bfcdd-4f30-4d82-8a3c-ae371c2b60fa", | | "id": "6a4bfcdd-4f30-4d82-8a3c-ae371c2b60fa", |
| "name": "FORCE", | | "name": "FORCE", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "RASTER PROCESSING", | | "display_name": "RASTER PROCESSING", |
| "id": "48a681f6-4145-4c82-8feb-545bff176d1f", | | "id": "48a681f6-4145-4c82-8feb-545bff176d1f", |
| "name": "RASTER PROCESSING", | | "name": "RASTER PROCESSING", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "REMOTE SENSING", | | "display_name": "REMOTE SENSING", |
| "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", | | "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", |
| "name": "REMOTE SENSING", | | "name": "REMOTE SENSING", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "SENTINEL-2", | | "display_name": "SENTINEL-2", |
| "id": "1fcb6de2-5d54-45cf-a42f-751cec4ebe86", | | "id": "1fcb6de2-5d54-45cf-a42f-751cec4ebe86", |
| "name": "SENTINEL-2", | | "name": "SENTINEL-2", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "SWITZERLAND", | | "display_name": "SWITZERLAND", |
| "id": "97ac3564-bb88-46ad-9fe4-b7d606e0aa3a", | | "id": "97ac3564-bb88-46ad-9fe4-b7d606e0aa3a", |
| "name": "SWITZERLAND", | | "name": "SWITZERLAND", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
| "display_name": "TIME SERIES", | | "display_name": "TIME SERIES", |
| "id": "12734ef1-cbba-4a27-8051-9887596c4d8c", | | "id": "12734ef1-cbba-4a27-8051-9887596c4d8c", |
| "name": "TIME SERIES", | | "name": "TIME SERIES", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
| "title": "Sentinel-2 time series of Switzerland", | | "title": "Sentinel-2 time series of Switzerland", |
| "type": "dataset", | | "type": "dataset", |
t | "url": null | t | "url": null, |
| | | "version": "1.0" |
| } | | } |