Changes
On February 9, 2022 at 6:38:54 AM UTC, Administrator:
-
Changed value of field
publication_state
toapproved
in Greenland shrubs and microclimate
f | 1 | { | f | 1 | { |
2 | "author": "[{\"affiliation\": \"WSL\", \"affiliation_02\": \"SLF\", | 2 | "author": "[{\"affiliation\": \"WSL\", \"affiliation_02\": \"SLF\", | ||
3 | \"affiliation_03\": \"Aarhus University\", \"data_credit\": | 3 | \"affiliation_03\": \"Aarhus University\", \"data_credit\": | ||
4 | [\"collection\", \"validation\", \"curation\", \"software\", | 4 | [\"collection\", \"validation\", \"curation\", \"software\", | ||
5 | \"publication\", \"supervision\"], \"email\": | 5 | \"publication\", \"supervision\"], \"email\": | ||
6 | \"nathalie.chardon@gmail.com\", \"given_name\": \"Nathalie Isabelle\", | 6 | \"nathalie.chardon@gmail.com\", \"given_name\": \"Nathalie Isabelle\", | ||
7 | \"identifier\": \"0000-0001-9120-4778\", \"name\": \"Chardon\"}, | 7 | \"identifier\": \"0000-0001-9120-4778\", \"name\": \"Chardon\"}, | ||
8 | {\"affiliation\": \"Aarhus University\", \"affiliation_02\": | 8 | {\"affiliation\": \"Aarhus University\", \"affiliation_02\": | ||
9 | \"Department of Bioscience\", \"affiliation_03\": \"\", | 9 | \"Department of Bioscience\", \"affiliation_03\": \"\", | ||
10 | \"data_credit\": [\"collection\", \"validation\", \"curation\", | 10 | \"data_credit\": [\"collection\", \"validation\", \"curation\", | ||
11 | \"software\"], \"email\": \"jnn@bios.au.dk\", \"given_name\": | 11 | \"software\"], \"email\": \"jnn@bios.au.dk\", \"given_name\": | ||
12 | \"Jacob\", \"identifier\": \"0000-0002-0716-9525\", \"name\": | 12 | \"Jacob\", \"identifier\": \"0000-0002-0716-9525\", \"name\": | ||
13 | \"Nabe-Nielsen\"}, {\"affiliation\": \"Aarhus University\", | 13 | \"Nabe-Nielsen\"}, {\"affiliation\": \"Aarhus University\", | ||
14 | \"affiliation_02\": \"Department of Biology\", \"affiliation_03\": | 14 | \"affiliation_02\": \"Department of Biology\", \"affiliation_03\": | ||
15 | \"\", \"data_credit\": \"software\", \"email\": | 15 | \"\", \"data_credit\": \"software\", \"email\": | ||
16 | \"j.assmann@ecos.au.dk\", \"given_name\": \"Jakob\", \"identifier\": | 16 | \"j.assmann@ecos.au.dk\", \"given_name\": \"Jakob\", \"identifier\": | ||
17 | \"0000-0002-3492-8419\", \"name\": \"Assmann\"}, {\"affiliation\": | 17 | \"0000-0002-3492-8419\", \"name\": \"Assmann\"}, {\"affiliation\": | ||
18 | \"Greenland Institute of Natural Resources\", \"affiliation_02\": | 18 | \"Greenland Institute of Natural Resources\", \"affiliation_02\": | ||
19 | \"\", \"affiliation_03\": \"\", \"data_credit\": \"collection\", | 19 | \"\", \"affiliation_03\": \"\", \"data_credit\": \"collection\", | ||
20 | \"email\": \"idja@natur.gl\", \"given_name\": \"Ida Bomhold\", | 20 | \"email\": \"idja@natur.gl\", \"given_name\": \"Ida Bomhold\", | ||
21 | \"identifier\": \"0000-0003-2481-8061\", \"name\": \"Dyrholm | 21 | \"identifier\": \"0000-0003-2481-8061\", \"name\": \"Dyrholm | ||
22 | Jacobsen\"}, {\"affiliation\": \"Univ. Grenoble Alpes, Univ. Savoie | 22 | Jacobsen\"}, {\"affiliation\": \"Univ. Grenoble Alpes, Univ. Savoie | ||
23 | Mont Blanc\", \"affiliation_02\": \"CNRS, LECA, Laboratoire | 23 | Mont Blanc\", \"affiliation_02\": \"CNRS, LECA, Laboratoire | ||
24 | d\\u2019Ecologie Alpine\", \"affiliation_03\": \"\", \"data_credit\": | 24 | d\\u2019Ecologie Alpine\", \"affiliation_03\": \"\", \"data_credit\": | ||
25 | [\"curation\", \"software\"], \"email\": | 25 | [\"curation\", \"software\"], \"email\": | ||
26 | \"maya.gueguen@univ-grenoble-alpes.fr\", \"given_name\": \"Maya\", | 26 | \"maya.gueguen@univ-grenoble-alpes.fr\", \"given_name\": \"Maya\", | ||
27 | \"identifier\": \"\", \"name\": \"Gu\\u00e9guen\"}, {\"affiliation\": | 27 | \"identifier\": \"\", \"name\": \"Gu\\u00e9guen\"}, {\"affiliation\": | ||
28 | \"Aarhus University\", \"affiliation_02\": \"Department of Biology\", | 28 | \"Aarhus University\", \"affiliation_02\": \"Department of Biology\", | ||
29 | \"affiliation_03\": \"\", \"data_credit\": \"supervision\", \"email\": | 29 | \"affiliation_03\": \"\", \"data_credit\": \"supervision\", \"email\": | ||
30 | \"signe.normand@bios.au.dk\", \"given_name\": \"Signe\", | 30 | \"signe.normand@bios.au.dk\", \"given_name\": \"Signe\", | ||
31 | \"identifier\": \"0000-0002-8782-4154\", \"name\": \"Normand\"}, | 31 | \"identifier\": \"0000-0002-8782-4154\", \"name\": \"Normand\"}, | ||
32 | {\"affiliation\": \"WSL\", \"affiliation_02\": \"SLF\", | 32 | {\"affiliation\": \"WSL\", \"affiliation_02\": \"SLF\", | ||
33 | \"affiliation_03\": \"Swiss National Park\", \"data_credit\": | 33 | \"affiliation_03\": \"Swiss National Park\", \"data_credit\": | ||
34 | \"supervision\", \"email\": \"sonja.wipf@nationalpark.ch\", | 34 | \"supervision\", \"email\": \"sonja.wipf@nationalpark.ch\", | ||
35 | \"given_name\": \"Sonja\", \"identifier\": \"0000-0002-3492-1399\", | 35 | \"given_name\": \"Sonja\", \"identifier\": \"0000-0002-3492-1399\", | ||
36 | \"name\": \"Wipf\"}]", | 36 | \"name\": \"Wipf\"}]", | ||
37 | "author_email": null, | 37 | "author_email": null, | ||
38 | "creator_user_id": "1e8d24c6-82c3-4ff0-a095-d2af4af0d225", | 38 | "creator_user_id": "1e8d24c6-82c3-4ff0-a095-d2af4af0d225", | ||
39 | "date": "[{\"date\": \"2020-08-01\", \"date_type\": \"collected\", | 39 | "date": "[{\"date\": \"2020-08-01\", \"date_type\": \"collected\", | ||
40 | \"end_date\": \"2020-08-31\"}, {\"date\": \"2011-06-01\", | 40 | \"end_date\": \"2020-08-31\"}, {\"date\": \"2011-06-01\", | ||
41 | \"date_type\": \"collected\", \"end_date\": \"2013-08-31\"}]", | 41 | \"date_type\": \"collected\", \"end_date\": \"2013-08-31\"}]", | ||
42 | "doi": "10.16904/envidat.286", | 42 | "doi": "10.16904/envidat.286", | ||
43 | "extras": [ | 43 | "extras": [ | ||
44 | { | 44 | { | ||
45 | "key": "resolution", | 45 | "key": "resolution", | ||
46 | "value": "0.09 km" | 46 | "value": "0.09 km" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "funding": "[{\"grant_number\": \"to JNN\", \"institution\": | 49 | "funding": "[{\"grant_number\": \"to JNN\", \"institution\": | ||
50 | \"Greenland Climate Research Center\", \"institution_url\": \"\"}, | 50 | \"Greenland Climate Research Center\", \"institution_url\": \"\"}, | ||
51 | {\"grant_number\": \"to JNN\", \"institution\": \"Arctic Research | 51 | {\"grant_number\": \"to JNN\", \"institution\": \"Arctic Research | ||
52 | Centre at Aarhus University\", \"institution_url\": \"\"}, | 52 | Centre at Aarhus University\", \"institution_url\": \"\"}, | ||
53 | {\"grant_number\": \"730938 to NIC\", \"institution\": \"European | 53 | {\"grant_number\": \"730938 to NIC\", \"institution\": \"European | ||
54 | Union\u2019s Horizon 2020 project INTERACT\", \"institution_url\": | 54 | Union\u2019s Horizon 2020 project INTERACT\", \"institution_url\": | ||
55 | \"\"}, {\"grant_number\": \"to NIC\", \"institution\": \"American | 55 | \"\"}, {\"grant_number\": \"to NIC\", \"institution\": \"American | ||
56 | Alpine Club\", \"institution_url\": \"\"}, {\"grant_number\": \"to | 56 | Alpine Club\", \"institution_url\": \"\"}, {\"grant_number\": \"to | ||
57 | NIC\", \"institution\": \"WSL Director's Fund\", \"institution_url\": | 57 | NIC\", \"institution\": \"WSL Director's Fund\", \"institution_url\": | ||
58 | \"\"}, {\"grant_number\": \"GLACE project grant to SW & SN\", | 58 | \"\"}, {\"grant_number\": \"GLACE project grant to SW & SN\", | ||
59 | \"institution\": \"Swiss Polar Institute\", \"institution_url\": | 59 | \"institution\": \"Swiss Polar Institute\", \"institution_url\": | ||
60 | \"\"}, {\"grant_number\": \"7027\u201000133B to SN\", \"institution\": | 60 | \"\"}, {\"grant_number\": \"7027\u201000133B to SN\", \"institution\": | ||
61 | \"Independent Research Fund, Denmark\", \"institution_url\": \"\"}]", | 61 | \"Independent Research Fund, Denmark\", \"institution_url\": \"\"}]", | ||
62 | "groups": [], | 62 | "groups": [], | ||
63 | "id": "040d25dd-71c0-40e6-99a8-849427250f5d", | 63 | "id": "040d25dd-71c0-40e6-99a8-849427250f5d", | ||
64 | "isopen": true, | 64 | "isopen": true, | ||
65 | "language": "en", | 65 | "language": "en", | ||
66 | "license_id": "cc-by-sa", | 66 | "license_id": "cc-by-sa", | ||
67 | "license_title": "Creative Commons Attribution Share-Alike | 67 | "license_title": "Creative Commons Attribution Share-Alike | ||
68 | (CC-BY-SA)", | 68 | (CC-BY-SA)", | ||
69 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | 69 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | ||
70 | "maintainer": "{\"affiliation\": \"WSL\", \"email\": | 70 | "maintainer": "{\"affiliation\": \"WSL\", \"email\": | ||
71 | \"nathalie.chardon@gmail.com\", \"given_name\": \"Nathalie\", | 71 | \"nathalie.chardon@gmail.com\", \"given_name\": \"Nathalie\", | ||
72 | \"identifier\": \"0000-0001-9120-4778\", \"name\": \"Chardon\"}", | 72 | \"identifier\": \"0000-0001-9120-4778\", \"name\": \"Chardon\"}", | ||
73 | "maintainer_email": null, | 73 | "maintainer_email": null, | ||
74 | "metadata_created": "2021-04-15T11:35:39.967832", | 74 | "metadata_created": "2021-04-15T11:35:39.967832", | ||
n | 75 | "metadata_modified": "2022-02-09T00:00:18.036736", | n | 75 | "metadata_modified": "2022-02-09T06:38:54.304855", |
76 | "name": "gl_microclim", | 76 | "name": "gl_microclim", | ||
77 | "notes": "## Study Aim\r\n\r\nWe collected these data to | 77 | "notes": "## Study Aim\r\n\r\nWe collected these data to | ||
78 | alternatively train and validate high resolution (~ 90 m) Species | 78 | alternatively train and validate high resolution (~ 90 m) Species | ||
79 | Distribution Models (SDMs) and Species Abundance Models (SAMs) for | 79 | Distribution Models (SDMs) and Species Abundance Models (SAMs) for | ||
80 | _Betula nana_ L. (dwarf birch, Betulaceae) and _Salix glauca_ L. (grey | 80 | _Betula nana_ L. (dwarf birch, Betulaceae) and _Salix glauca_ L. (grey | ||
81 | willow, Salicaceae) in Southwest Greenland to assess how well such | 81 | willow, Salicaceae) in Southwest Greenland to assess how well such | ||
82 | models can predict local-scale patterns.\r\n\r\n## Data | 82 | models can predict local-scale patterns.\r\n\r\n## Data | ||
83 | Description\r\n\r\nIndividual (presence-absence, abundance, maximum | 83 | Description\r\n\r\nIndividual (presence-absence, abundance, maximum | ||
84 | vegetative height) and community (species composition, maximum canopy | 84 | vegetative height) and community (species composition, maximum canopy | ||
85 | height) shrub data for two fjords near Nuuk, Southwest Greenland. Also | 85 | height) shrub data for two fjords near Nuuk, Southwest Greenland. Also | ||
86 | provided are corresponding downscaled climate data as well as | 86 | provided are corresponding downscaled climate data as well as | ||
87 | calculated topographic and terrain wetness indicator variables. | 87 | calculated topographic and terrain wetness indicator variables. | ||
88 | \r\n\r\n### Nuup Kangerlua (Godth\u00e5bsfjord)\r\n\r\n_Betula nana_ | 88 | \r\n\r\n### Nuup Kangerlua (Godth\u00e5bsfjord)\r\n\r\n_Betula nana_ | ||
89 | and _Salix glauca_ presence-absence, abundance, community species | 89 | and _Salix glauca_ presence-absence, abundance, community species | ||
90 | richness\r\n\r\n### Kangerluarsunnguaq (Kobbefjord)\r\n\r\nShrub | 90 | richness\r\n\r\n### Kangerluarsunnguaq (Kobbefjord)\r\n\r\nShrub | ||
91 | presence-absence, abundance, maximum vegetative height, community | 91 | presence-absence, abundance, maximum vegetative height, community | ||
92 | composition, maximum shrub canopy height \r\n\r\n\r\n## | 92 | composition, maximum shrub canopy height \r\n\r\n\r\n## | ||
93 | Methods\r\n\r\n### Field survey in Nuup Kangerlua\r\n\r\nWe conducted | 93 | Methods\r\n\r\n### Field survey in Nuup Kangerlua\r\n\r\nWe conducted | ||
94 | a stratified systematic plant survey along the length of Nuup | 94 | a stratified systematic plant survey along the length of Nuup | ||
95 | Kangerlua (NK) fjord in Soutwesth Greenland (Fig. 1 in Chardon et al. | 95 | Kangerlua (NK) fjord in Soutwesth Greenland (Fig. 1 in Chardon et al. | ||
96 | 2022; following Nabe-Nielsen et al., 2017). At five distinct sites, we | 96 | 2022; following Nabe-Nielsen et al., 2017). At five distinct sites, we | ||
97 | sampled along elevational gradients to collect data on presences, | 97 | sampled along elevational gradients to collect data on presences, | ||
98 | absences, abundance, and species composition of all woody species | 98 | absences, abundance, and species composition of all woody species | ||
99 | using a 0.7 x 0.7 m pin-point frame (Fig. 1e in Chardon et al. 2022). | 99 | using a 0.7 x 0.7 m pin-point frame (Fig. 1e in Chardon et al. 2022). | ||
100 | For model training, we converted these pin-point data to percent cover | 100 | For model training, we converted these pin-point data to percent cover | ||
101 | estimates based on the number of pins dropped (n = 25 per plot) and | 101 | estimates based on the number of pins dropped (n = 25 per plot) and | ||
102 | averaged them across the 119 spatio-climatic grids (see next section) | 102 | averaged them across the 119 spatio-climatic grids (see next section) | ||
103 | corresponding to the plot locations (for details see Appendix S2 in | 103 | corresponding to the plot locations (for details see Appendix S2 in | ||
104 | Chardon et al. 2022). \r\n\r\n### Field survey in Kangerluarsunnguaq | 104 | Chardon et al. 2022). \r\n\r\n### Field survey in Kangerluarsunnguaq | ||
105 | \r\n\r\nWe conducted a random stratified plant survey in | 105 | \r\n\r\nWe conducted a random stratified plant survey in | ||
106 | Kangerluarsunnguaq (K) fjord in Southwest Greenland. We used a | 106 | Kangerluarsunnguaq (K) fjord in Southwest Greenland. We used a | ||
107 | preliminary Species Abundance Model trained with summed pin counts of | 107 | preliminary Species Abundance Model trained with summed pin counts of | ||
108 | _Betula nana_ in NK fjord (see Fig. S1.3 in Chardon et al. 2022) to | 108 | _Betula nana_ in NK fjord (see Fig. S1.3 in Chardon et al. 2022) to | ||
109 | stratify the ~ 27 x 17 km fjord landscape into low, medium, and high | 109 | stratify the ~ 27 x 17 km fjord landscape into low, medium, and high | ||
110 | abundances classes. We randomly selected 90 x 90 m spatio-climatic | 110 | abundances classes. We randomly selected 90 x 90 m spatio-climatic | ||
111 | grids to survey in each class for a total of 200 grids, ensuring that | 111 | grids to survey in each class for a total of 200 grids, ensuring that | ||
112 | they were accessible by foot or boat (for details see Appendix S2 in | 112 | they were accessible by foot or boat (for details see Appendix S2 in | ||
113 | Chardon et al. 2022). Within each grid, we sampled within three 1 m2 | 113 | Chardon et al. 2022). Within each grid, we sampled within three 1 m2 | ||
114 | quadrats arranged in a randomly rotated equilateral triangle centered | 114 | quadrats arranged in a randomly rotated equilateral triangle centered | ||
115 | on the mid-point of the cell. We used a gridded sampling quadrat with | 115 | on the mid-point of the cell. We used a gridded sampling quadrat with | ||
116 | 1% delineations (Fig. 1h in Chardon et al. 2022) to record woody | 116 | 1% delineations (Fig. 1h in Chardon et al. 2022) to record woody | ||
117 | species presences, absences, and composition, estimated percent cover, | 117 | species presences, absences, and composition, estimated percent cover, | ||
118 | and measured maximum shrub species vegetatitve height. At every plot, | 118 | and measured maximum shrub species vegetatitve height. At every plot, | ||
119 | we also visually scanned the area in a 20 m radius from the plot and | 119 | we also visually scanned the area in a 20 m radius from the plot and | ||
120 | recorded the presence of any additional shrub species to estimate | 120 | recorded the presence of any additional shrub species to estimate | ||
121 | grid-level species richness. As in NK fjord, we averaged these data at | 121 | grid-level species richness. As in NK fjord, we averaged these data at | ||
122 | the grid level (for details see Appendix S2 in Chardon et al. | 122 | the grid level (for details see Appendix S2 in Chardon et al. | ||
123 | 2022).\r\n\r\n### Biotic variables\r\n\r\nWe calculated biotic | 123 | 2022).\r\n\r\n### Biotic variables\r\n\r\nWe calculated biotic | ||
124 | microscale variables from the plant survey data collected in NK and K | 124 | microscale variables from the plant survey data collected in NK and K | ||
125 | fjords. We calculated shrub species richness, diversity, and | 125 | fjords. We calculated shrub species richness, diversity, and | ||
126 | competition (i.e. sum of non-B. nana or non-S. glauca pin hits or | 126 | competition (i.e. sum of non-B. nana or non-S. glauca pin hits or | ||
127 | percent cover). In K fjord, we also calculated canopy height as the | 127 | percent cover). In K fjord, we also calculated canopy height as the | ||
128 | community weighted mean (by abundance) of maximum vegetative shrub | 128 | community weighted mean (by abundance) of maximum vegetative shrub | ||
129 | height.\r\n\r\n### Climate variables \r\n\r\nWe computed high | 129 | height.\r\n\r\n### Climate variables \r\n\r\nWe computed high | ||
130 | resolution temperature, precipitation, and insolation for local scale | 130 | resolution temperature, precipitation, and insolation for local scale | ||
131 | data for the study area by statistically downscaling climate time | 131 | data for the study area by statistically downscaling climate time | ||
132 | series (1982 - 2013) from the monthly CHELSA data (Karger et al. | 132 | series (1982 - 2013) from the monthly CHELSA data (Karger et al. | ||
133 | 2017). We downscaled these data from 30 arc sec (~ 400 m at the | 133 | 2017). We downscaled these data from 30 arc sec (~ 400 m at the | ||
134 | latitude of our study) to our target grid size of ~ 90 m with | 134 | latitude of our study) to our target grid size of ~ 90 m with | ||
135 | geographic weighted regression and using the MEaSUREs Greenland Ice | 135 | geographic weighted regression and using the MEaSUREs Greenland Ice | ||
136 | Mapping Project (GIMP) Digital Elevation Model (DEM) v. 1 (Howat et | 136 | Mapping Project (GIMP) Digital Elevation Model (DEM) v. 1 (Howat et | ||
137 | al., 2014, 2015). We then calculated 30-year averages of the climate | 137 | al., 2014, 2015). We then calculated 30-year averages of the climate | ||
138 | parameters: average summer (June \u2013 August) maximum temperature, | 138 | parameters: average summer (June \u2013 August) maximum temperature, | ||
139 | yearly maximum temperature, yearly minimum temperature, temperature | 139 | yearly maximum temperature, yearly minimum temperature, temperature | ||
140 | continentality (yearly max. - min. temperatures), cumulative Spring | 140 | continentality (yearly max. - min. temperatures), cumulative Spring | ||
141 | (March \u2013 May) precipitation, cumulative summer precipitation, and | 141 | (March \u2013 May) precipitation, cumulative summer precipitation, and | ||
142 | average summer incident solar radiation (henceforth, insolation) (for | 142 | average summer incident solar radiation (henceforth, insolation) (for | ||
143 | calculation details see Appendices S2, S3 in Chardon et al. 2022 and | 143 | calculation details see Appendices S2, S3 in Chardon et al. 2022 and | ||
144 | Appendix S2 in von Oppen et al. 2021).\r\n\r\n### Topography and | 144 | Appendix S2 in von Oppen et al. 2021).\r\n\r\n### Topography and | ||
145 | terrain wetness indicator variables\r\n\r\nWe calculated several | 145 | terrain wetness indicator variables\r\n\r\nWe calculated several | ||
146 | topographic and terrain wetness indices at a local scale. We derived | 146 | topographic and terrain wetness indices at a local scale. We derived | ||
147 | slope, aspect, and the SAGA wetness index (hereafter TWI; Boehner et | 147 | slope, aspect, and the SAGA wetness index (hereafter TWI; Boehner et | ||
148 | al., 2002; Boehner and Selige, 2006) from the GIMP DEM. TWI is a | 148 | al., 2002; Boehner and Selige, 2006) from the GIMP DEM. TWI is a | ||
149 | measure of how \u2018wet\u2019 an area is, based on water drainage | 149 | measure of how \u2018wet\u2019 an area is, based on water drainage | ||
150 | from the surrounding landscape. We also calculated the tasseled cap | 150 | from the surrounding landscape. We also calculated the tasseled cap | ||
151 | wetness component (hereafter TCW, Crist and Cicone 1984) from | 151 | wetness component (hereafter TCW, Crist and Cicone 1984) from | ||
152 | satellite images (for details see Appendices S2, S3 in Chardon et al. | 152 | satellite images (for details see Appendices S2, S3 in Chardon et al. | ||
153 | 2022) as an alternative measure of wetness. \r\n\r\n### Computer | 153 | 2022) as an alternative measure of wetness. \r\n\r\n### Computer | ||
154 | code\r\n\r\nAttached as zip file and available on GitLab | 154 | code\r\n\r\nAttached as zip file and available on GitLab | ||
155 | (https://gitlab.com/nathaliechardon/gl_microclim)\r\n\r\n### | 155 | (https://gitlab.com/nathaliechardon/gl_microclim)\r\n\r\n### | ||
156 | Third-party data\r\n\r\nData used to calculate climate, topography, | 156 | Third-party data\r\n\r\nData used to calculate climate, topography, | ||
157 | and terrain wetness indicator variables are publicly available (see | 157 | and terrain wetness indicator variables are publicly available (see | ||
158 | Appendix S2 in Chardon et al. 2022 for all data references).", | 158 | Appendix S2 in Chardon et al. 2022 for all data references).", | ||
159 | "num_resources": 3, | 159 | "num_resources": 3, | ||
160 | "num_tags": 6, | 160 | "num_tags": 6, | ||
161 | "organization": { | 161 | "organization": { | ||
162 | "approval_status": "approved", | 162 | "approval_status": "approved", | ||
163 | "created": "2016-11-15T17:00:55.703329", | 163 | "created": "2016-11-15T17:00:55.703329", | ||
164 | "description": "Mountain ecosystems are characterized by harsh | 164 | "description": "Mountain ecosystems are characterized by harsh | ||
165 | environmental conditions. These include often long lasting snow cover, | 165 | environmental conditions. These include often long lasting snow cover, | ||
166 | short growing seasons and topographically related disturbances such as | 166 | short growing seasons and topographically related disturbances such as | ||
167 | avalanches, rockfall or landslides.Mountain ecosystems and inhabiting | 167 | avalanches, rockfall or landslides.Mountain ecosystems and inhabiting | ||
168 | animal and plant species are generally well adapted to these | 168 | animal and plant species are generally well adapted to these | ||
169 | conditions. However, they may react sensitively to changes of climate, | 169 | conditions. However, they may react sensitively to changes of climate, | ||
170 | land-use and disturbance regimes. Activities of the group focus on | 170 | land-use and disturbance regimes. Activities of the group focus on | ||
171 | mountain ecosystems above and below the treeline (mountain forest, | 171 | mountain ecosystems above and below the treeline (mountain forest, | ||
172 | alpine ecosystems) and represent links between ecosystem research of | 172 | alpine ecosystems) and represent links between ecosystem research of | ||
173 | WSL and snow and avalanche topics of the SLF in | 173 | WSL and snow and avalanche topics of the SLF in | ||
174 | Davos.\r\n\r\n__Further information__: | 174 | Davos.\r\n\r\n__Further information__: | ||
175 | ganization/research-units/community-ecology/mountain-ecosystems.html", | 175 | ganization/research-units/community-ecology/mountain-ecosystems.html", | ||
176 | "id": "f666a8d9-de8b-4dcf-b24f-45dd31937218", | 176 | "id": "f666a8d9-de8b-4dcf-b24f-45dd31937218", | ||
177 | "image_url": "2018-07-10-090212.143084LogoWSL.svg", | 177 | "image_url": "2018-07-10-090212.143084LogoWSL.svg", | ||
178 | "is_organization": true, | 178 | "is_organization": true, | ||
179 | "name": "mountain-ecosystems", | 179 | "name": "mountain-ecosystems", | ||
180 | "state": "active", | 180 | "state": "active", | ||
181 | "title": "Mountain Ecosystems", | 181 | "title": "Mountain Ecosystems", | ||
182 | "type": "organization" | 182 | "type": "organization" | ||
183 | }, | 183 | }, | ||
184 | "owner_org": "f666a8d9-de8b-4dcf-b24f-45dd31937218", | 184 | "owner_org": "f666a8d9-de8b-4dcf-b24f-45dd31937218", | ||
185 | "private": false, | 185 | "private": false, | ||
186 | "publication": "{\"publication_year\": \"2022\", \"publisher\": | 186 | "publication": "{\"publication_year\": \"2022\", \"publisher\": | ||
187 | \"EnviDat\"}", | 187 | \"EnviDat\"}", | ||
t | 188 | "publication_state": "pub_pending", | t | 188 | "publication_state": "approved", |
189 | "related_datasets": "", | 189 | "related_datasets": "", | ||
190 | "related_publications": "Chardon et al. (2022). High resolution | 190 | "related_publications": "Chardon et al. (2022). High resolution | ||
191 | Species Distribution and Abundance Models cannot predict separate | 191 | Species Distribution and Abundance Models cannot predict separate | ||
192 | shrub datasets in adjacent Arctic fjords. Diversity and | 192 | shrub datasets in adjacent Arctic fjords. Diversity and | ||
193 | Distributions.", | 193 | Distributions.", | ||
194 | "relationships_as_object": [], | 194 | "relationships_as_object": [], | ||
195 | "relationships_as_subject": [], | 195 | "relationships_as_subject": [], | ||
196 | "resource_type": "datapaper", | 196 | "resource_type": "datapaper", | ||
197 | "resource_type_general": "datapaper", | 197 | "resource_type_general": "datapaper", | ||
198 | "resources": [ | 198 | "resources": [ | ||
199 | { | 199 | { | ||
200 | "cache_last_updated": null, | 200 | "cache_last_updated": null, | ||
201 | "cache_url": null, | 201 | "cache_url": null, | ||
202 | "created": "2021-04-15T12:25:06.089672", | 202 | "created": "2021-04-15T12:25:06.089672", | ||
203 | "description": "## Collected July-August 2011-2013 (PI: Jacob | 203 | "description": "## Collected July-August 2011-2013 (PI: Jacob | ||
204 | Nabe-Nielsen)\r\n\r\nThese data collected July-August 2011-2013 (PI: | 204 | Nabe-Nielsen)\r\n\r\nThese data collected July-August 2011-2013 (PI: | ||
205 | Jacob Nabe-Nielsen). Please contact J. Nabe-Nielsen | 205 | Jacob Nabe-Nielsen). Please contact J. Nabe-Nielsen | ||
206 | (jnn_at_ecos.au.dk) to request access to data on all surveyed shrub | 206 | (jnn_at_ecos.au.dk) to request access to data on all surveyed shrub | ||
207 | species. Available here are only data used in Chardon et al. | 207 | species. Available here are only data used in Chardon et al. | ||
208 | 2022.\r\n\r\n## COLUMN ABBREVIATIONS\r\n\r\n### Metadata for 90 m | 208 | 2022.\r\n\r\n## COLUMN ABBREVIATIONS\r\n\r\n### Metadata for 90 m | ||
209 | spatial grid\r\n\r\nyear: sampling year \r\n\r\nalt: average altitude | 209 | spatial grid\r\n\r\nyear: sampling year \r\n\r\nalt: average altitude | ||
210 | of grid as recorded during field surveys [m]\r\n\r\nlong: WGS84 | 210 | of grid as recorded during field surveys [m]\r\n\r\nlong: WGS84 | ||
211 | longitude\r\n\r\nlat: WGS84 latitude\r\n\r\nx_stere: longitude in | 211 | longitude\r\n\r\nlat: WGS84 latitude\r\n\r\nx_stere: longitude in | ||
212 | Polar Stereographic (EPSG 4326)\r\n\r\ny_stere: latitude in Polar | 212 | Polar Stereographic (EPSG 4326)\r\n\r\ny_stere: latitude in Polar | ||
213 | Stereographic (EPSG 4326)\r\n\r\n### Species presence [1] or absence | 213 | Stereographic (EPSG 4326)\r\n\r\n### Species presence [1] or absence | ||
214 | [0] at grid level\r\n\r\npa_bena: _Betula nana_\r\n\r\npa_sagl: _Salix | 214 | [0] at grid level\r\n\r\npa_bena: _Betula nana_\r\n\r\npa_sagl: _Salix | ||
215 | glauca_\r\n\r\n### Shrub species cover (calculated from pin hits in | 215 | glauca_\r\n\r\n### Shrub species cover (calculated from pin hits in | ||
216 | 0.7 x 0.7 m frame, based on total of 25 hits) [%]\r\n\r\ncov_bena: | 216 | 0.7 x 0.7 m frame, based on total of 25 hits) [%]\r\n\r\ncov_bena: | ||
217 | _Betula nana_ cover\r\n\r\ncov_sagl: _Salix glauca_ cover\r\n\r\n### | 217 | _Betula nana_ cover\r\n\r\ncov_sagl: _Salix glauca_ cover\r\n\r\n### | ||
218 | Downscaled climate (time series 1984 \u2013 2013)\r\n\r\ntempjja: | 218 | Downscaled climate (time series 1984 \u2013 2013)\r\n\r\ntempjja: | ||
219 | average maximum June-August temperature [\u00baC]\r\n\r\ntempmax: | 219 | average maximum June-August temperature [\u00baC]\r\n\r\ntempmax: | ||
220 | yearly maximum temperature [\u00baC]\r\n\r\ntempmin: yearly minimum | 220 | yearly maximum temperature [\u00baC]\r\n\r\ntempmin: yearly minimum | ||
221 | temperature [\u00baC]\r\n\r\ntempcont: yearly maximum \u2013 minimum | 221 | temperature [\u00baC]\r\n\r\ntempcont: yearly maximum \u2013 minimum | ||
222 | temperature [\u00baC]\r\n\r\nprecipmam: cumulative March-May | 222 | temperature [\u00baC]\r\n\r\nprecipmam: cumulative March-May | ||
223 | precipitation [mm]\r\n\r\nprecipjja: cumulative June-August | 223 | precipitation [mm]\r\n\r\nprecipjja: cumulative June-August | ||
224 | precipitation [mm]\r\n\r\ninsoljja: average June-August insolation [MJ | 224 | precipitation [mm]\r\n\r\ninsoljja: average June-August insolation [MJ | ||
225 | cm-2 yr-1]\r\n\r\n### Topography and terrain wetness (calculated | 225 | cm-2 yr-1]\r\n\r\n### Topography and terrain wetness (calculated | ||
226 | from)\r\n\r\ntwi: SAGA wetness index (MEaSUREs Greenland Ice Mapping | 226 | from)\r\n\r\ntwi: SAGA wetness index (MEaSUREs Greenland Ice Mapping | ||
227 | Project Digital Elevation Model v. 1; Howat et al., 2014, | 227 | Project Digital Elevation Model v. 1; Howat et al., 2014, | ||
228 | 2015)\r\n\r\nslope: slope angle (MEaSUREs Greenland Ice Mapping | 228 | 2015)\r\n\r\nslope: slope angle (MEaSUREs Greenland Ice Mapping | ||
229 | Project Digital Elevation Model v. 1; Howat et al., 2014, 2015) | 229 | Project Digital Elevation Model v. 1; Howat et al., 2014, 2015) | ||
230 | [\u00ba]\r\n\r\nasp: aspect (MEaSUREs Greenland Ice Mapping Project | 230 | [\u00ba]\r\n\r\nasp: aspect (MEaSUREs Greenland Ice Mapping Project | ||
231 | Digital Elevation Model v. 1; Howat et al., 2014, 2015) | 231 | Digital Elevation Model v. 1; Howat et al., 2014, 2015) | ||
232 | [\u00ba]\r\n\r\ntcws: Tasseled Cap Wetness component (Sentinal | 232 | [\u00ba]\r\n\r\ntcws: Tasseled Cap Wetness component (Sentinal | ||
233 | images)\r\n\r\n### Community characteristics\r\n\r\nrich: shrub | 233 | images)\r\n\r\n### Community characteristics\r\n\r\nrich: shrub | ||
234 | species richness averaged across pin-point frames per | 234 | species richness averaged across pin-point frames per | ||
235 | grid\r\n\r\nshan: Shannon diversity (\u2018vegan\u2019 package; | 235 | grid\r\n\r\nshan: Shannon diversity (\u2018vegan\u2019 package; | ||
236 | Oksanen et al. 2019)\r\n\r\ncomp_bena: shrub competition on Betula | 236 | Oksanen et al. 2019)\r\n\r\ncomp_bena: shrub competition on Betula | ||
237 | nana (i.e. summed cover of non-_B. nana_ species) [% | 237 | nana (i.e. summed cover of non-_B. nana_ species) [% | ||
238 | cover]\r\n\r\ncomp_sagl: shrub competition on Salix glauca (i.e. | 238 | cover]\r\n\r\ncomp_sagl: shrub competition on Salix glauca (i.e. | ||
239 | summed cover of non-_S. glauca_ species) [% cover]", | 239 | summed cover of non-_S. glauca_ species) [% cover]", | ||
240 | "doi": "", | 240 | "doi": "", | ||
241 | "format": ".csv", | 241 | "format": ".csv", | ||
242 | "hash": "", | 242 | "hash": "", | ||
243 | "id": "49bbe7fa-5694-4aff-9754-1d66bdc0978e", | 243 | "id": "49bbe7fa-5694-4aff-9754-1d66bdc0978e", | ||
244 | "last_modified": "2022-02-09T00:39:39.537017", | 244 | "last_modified": "2022-02-09T00:39:39.537017", | ||
245 | "metadata_modified": "2022-02-08T23:43:51.872286", | 245 | "metadata_modified": "2022-02-08T23:43:51.872286", | ||
246 | "mimetype": null, | 246 | "mimetype": null, | ||
247 | "mimetype_inner": null, | 247 | "mimetype_inner": null, | ||
248 | "name": "Nuup Kangerlua", | 248 | "name": "Nuup Kangerlua", | ||
249 | "package_id": "040d25dd-71c0-40e6-99a8-849427250f5d", | 249 | "package_id": "040d25dd-71c0-40e6-99a8-849427250f5d", | ||
250 | "position": 0, | 250 | "position": 0, | ||
251 | "publication_state": "", | 251 | "publication_state": "", | ||
252 | "resource_size": "{\"size_units\": \"kb\", \"size_value\": | 252 | "resource_size": "{\"size_units\": \"kb\", \"size_value\": | ||
253 | \"\"}", | 253 | \"\"}", | ||
254 | "resource_type": null, | 254 | "resource_type": null, | ||
255 | "restricted": "{\"allowed_users\": \"\", \"level\": \"public\", | 255 | "restricted": "{\"allowed_users\": \"\", \"level\": \"public\", | ||
256 | \"shared_secret\": \"\"}", | 256 | \"shared_secret\": \"\"}", | ||
257 | "size": 27166, | 257 | "size": 27166, | ||
258 | "state": "active", | 258 | "state": "active", | ||
259 | "url": | 259 | "url": | ||
260 | urce/49bbe7fa-5694-4aff-9754-1d66bdc0978e/download/nuupkangerlua.csv", | 260 | urce/49bbe7fa-5694-4aff-9754-1d66bdc0978e/download/nuupkangerlua.csv", | ||
261 | "url_type": "upload" | 261 | "url_type": "upload" | ||
262 | }, | 262 | }, | ||
263 | { | 263 | { | ||
264 | "cache_last_updated": null, | 264 | "cache_last_updated": null, | ||
265 | "cache_url": null, | 265 | "cache_url": null, | ||
266 | "created": "2021-04-15T12:25:51.498446", | 266 | "created": "2021-04-15T12:25:51.498446", | ||
267 | "description": "## Collected August 2020 (PI: Nathalie Isabelle | 267 | "description": "## Collected August 2020 (PI: Nathalie Isabelle | ||
268 | Chardon)\r\n\r\nThese data collected August 2020 (PI: Nathalie | 268 | Chardon)\r\n\r\nThese data collected August 2020 (PI: Nathalie | ||
269 | Isabelle Chardon). Please contact N. I. Chardon | 269 | Isabelle Chardon). Please contact N. I. Chardon | ||
270 | (nathalie.chardon_at_gmail.com) for individual quadrat (i.e. 1 m x 1 | 270 | (nathalie.chardon_at_gmail.com) for individual quadrat (i.e. 1 m x 1 | ||
271 | m) data, which are averaged at the 90 m spatial grid here. \r\n\r\n## | 271 | m) data, which are averaged at the 90 m spatial grid here. \r\n\r\n## | ||
272 | COLUMN ABBREVIATIONS\r\n\r\n### Metadata for 90 m spatial | 272 | COLUMN ABBREVIATIONS\r\n\r\n### Metadata for 90 m spatial | ||
273 | grid\r\n\r\nid: sampling zone and unique 90 m grid | 273 | grid\r\n\r\nid: sampling zone and unique 90 m grid | ||
274 | identifier\r\n\r\nlong: WGS84 longitude\r\n\r\nlat: WGS84 | 274 | identifier\r\n\r\nlong: WGS84 longitude\r\n\r\nlat: WGS84 | ||
275 | latitude\r\n\r\nx_stere: longitude in Polar Stereographic (EPSG | 275 | latitude\r\n\r\nx_stere: longitude in Polar Stereographic (EPSG | ||
276 | 4326)\r\n\r\ny_stere: latitude in Polar Stereographic (EPSG | 276 | 4326)\r\n\r\ny_stere: latitude in Polar Stereographic (EPSG | ||
277 | 4326)\r\n\r\ndate: sampling day.month.year\r\n\r\n### Species presence | 277 | 4326)\r\n\r\ndate: sampling day.month.year\r\n\r\n### Species presence | ||
278 | [1] or absence [0] at grid level\r\n\r\nalcr: _Alnus crispa_ | 278 | [1] or absence [0] at grid level\r\n\r\nalcr: _Alnus crispa_ | ||
279 | \r\n\r\nbena: _Betula nana_\r\n\r\ndila: _Diapensia | 279 | \r\n\r\nbena: _Betula nana_\r\n\r\ndila: _Diapensia | ||
280 | lapponica_\r\n\r\nemni: _Empetrum nigrum_\r\n\r\nhahy: _Harimanella | 280 | lapponica_\r\n\r\nemni: _Empetrum nigrum_\r\n\r\nhahy: _Harimanella | ||
281 | hypoides_\r\n\r\nlopr: _Loiseleuria procumbens_\r\n\r\noxpa: | 281 | hypoides_\r\n\r\nlopr: _Loiseleuria procumbens_\r\n\r\noxpa: | ||
282 | _Oxycoccus palustre_\r\n\r\nphca: _Phyllodoce caerulea_\r\n\r\nrhod: | 282 | _Oxycoccus palustre_\r\n\r\nphca: _Phyllodoce caerulea_\r\n\r\nrhod: | ||
283 | _Rhododendron_ sp.\r\n\r\nsaar: _Salix arctica_\r\n\r\nsagl: _Salix | 283 | _Rhododendron_ sp.\r\n\r\nsaar: _Salix arctica_\r\n\r\nsagl: _Salix | ||
284 | glauca_\r\n\r\nsahe: _Salix herbacea_\r\n\r\nvaul: _Vaccinium | 284 | glauca_\r\n\r\nsahe: _Salix herbacea_\r\n\r\nvaul: _Vaccinium | ||
285 | uliginosum_\r\n\r\ndrin: _Dryas integrifolia_\r\n\r\nthpr: _Thymus | 285 | uliginosum_\r\n\r\ndrin: _Dryas integrifolia_\r\n\r\nthpr: _Thymus | ||
286 | praecox_\r\n\r\n### Habitat characteristics [% cover]\r\n\r\nshrub: | 286 | praecox_\r\n\r\n### Habitat characteristics [% cover]\r\n\r\nshrub: | ||
287 | all shrub species\r\n\r\ngram: graminoids\r\n\r\nforb: | 287 | all shrub species\r\n\r\ngram: graminoids\r\n\r\nforb: | ||
288 | forbs\r\n\r\nbryo: bryophytes\r\n\r\nlich: lichens\r\n\r\nlitt: | 288 | forbs\r\n\r\nbryo: bryophytes\r\n\r\nlich: lichens\r\n\r\nlitt: | ||
289 | litter\r\n\r\nbare: bare ground\r\n\r\nstone: stones (> 2 | 289 | litter\r\n\r\nbare: bare ground\r\n\r\nstone: stones (> 2 | ||
290 | cm)\r\n\r\norg: organic crust\r\n\r\n### Shrub species height (maximum | 290 | cm)\r\n\r\norg: organic crust\r\n\r\n### Shrub species height (maximum | ||
291 | vegetative height) [mm] and cover (estimated in 1x1 m quadrat) | 291 | vegetative height) [mm] and cover (estimated in 1x1 m quadrat) | ||
292 | [%]\r\n\r\nalcr_c: _Alnus crispa_ cover\r\n\r\nalcr_h: _Alnus crispa_ | 292 | [%]\r\n\r\nalcr_c: _Alnus crispa_ cover\r\n\r\nalcr_h: _Alnus crispa_ | ||
293 | height\r\n\r\nbena_c: _Betula nana_ cover\r\n\r\nbena_h: _Betula nana_ | 293 | height\r\n\r\nbena_c: _Betula nana_ cover\r\n\r\nbena_h: _Betula nana_ | ||
294 | height\r\n\r\ndila_c: _Diapensia lapponica_ cover\r\n\r\ndila_h: | 294 | height\r\n\r\ndila_c: _Diapensia lapponica_ cover\r\n\r\ndila_h: | ||
295 | _Diapensia lapponica_ height\r\n\r\nemni_c: _Empetrum nigrum_ | 295 | _Diapensia lapponica_ height\r\n\r\nemni_c: _Empetrum nigrum_ | ||
296 | cover\r\n\r\nemni_h: _Empetrum nigrum_ height\r\n\r\nhahy_c: | 296 | cover\r\n\r\nemni_h: _Empetrum nigrum_ height\r\n\r\nhahy_c: | ||
297 | _Harimanella hypoides_ cover\r\n\r\nhahy_h: _Harimanella hypoides_ | 297 | _Harimanella hypoides_ cover\r\n\r\nhahy_h: _Harimanella hypoides_ | ||
298 | height\r\n\r\nlopr_c: _Loiseleuria procumbens_ cover\r\n\r\nlopr_h: | 298 | height\r\n\r\nlopr_c: _Loiseleuria procumbens_ cover\r\n\r\nlopr_h: | ||
299 | _Loiseleuria procumbens_ height\r\n\r\noxpa_c: _Oxycoccus palustre_ | 299 | _Loiseleuria procumbens_ height\r\n\r\noxpa_c: _Oxycoccus palustre_ | ||
300 | cover\r\n\r\noxpa_h: _Oxycoccus palustre_ height\r\n\r\nphca_c: | 300 | cover\r\n\r\noxpa_h: _Oxycoccus palustre_ height\r\n\r\nphca_c: | ||
301 | _Phyllodoce caerulea_ cover\r\n\r\nphca_height: _Phyllodoce caerulea_ | 301 | _Phyllodoce caerulea_ cover\r\n\r\nphca_height: _Phyllodoce caerulea_ | ||
302 | height\r\n\r\nrhod_c: _Rhododendron_ sp. cover\r\n\r\nrhod_h: | 302 | height\r\n\r\nrhod_c: _Rhododendron_ sp. cover\r\n\r\nrhod_h: | ||
303 | _Rhododendron_ sp. height\r\n\r\nsaar_c: _Salix arctica_ | 303 | _Rhododendron_ sp. height\r\n\r\nsaar_c: _Salix arctica_ | ||
304 | cover\r\n\r\nsaar_h: _Salix arctica_ height\r\n\r\nsagl_c: _Salix | 304 | cover\r\n\r\nsaar_h: _Salix arctica_ height\r\n\r\nsagl_c: _Salix | ||
305 | glauca_ cover\r\n\r\nsagl_h: _Salix glauca_ height\r\n\r\nsahe_c: | 305 | glauca_ cover\r\n\r\nsagl_h: _Salix glauca_ height\r\n\r\nsahe_c: | ||
306 | _Salix herbacea_ cover\r\n\r\nsahe_h: _Salix herbacea_ | 306 | _Salix herbacea_ cover\r\n\r\nsahe_h: _Salix herbacea_ | ||
307 | height\r\n\r\nvaul_c: _Vaccinium uliginosum_ cover\r\n\r\nvaul_h: | 307 | height\r\n\r\nvaul_c: _Vaccinium uliginosum_ cover\r\n\r\nvaul_h: | ||
308 | _Vaccinium uliginosum_ height\r\n\r\ndrin_c: _Dryas integrifolia_ | 308 | _Vaccinium uliginosum_ height\r\n\r\ndrin_c: _Dryas integrifolia_ | ||
309 | cover\r\n\r\ndrin_h: _Dryas integrifolia_ height\r\n\r\n### Community | 309 | cover\r\n\r\ndrin_h: _Dryas integrifolia_ height\r\n\r\n### Community | ||
310 | characteristics\r\n\r\nrich_pa: shrub species richness at grid | 310 | characteristics\r\n\r\nrich_pa: shrub species richness at grid | ||
311 | level\r\n\r\nrich: shrub species richness averaged across 3 1x1 m | 311 | level\r\n\r\nrich: shrub species richness averaged across 3 1x1 m | ||
312 | sampling quadrats per grid\r\n\r\nshan: Shannon diversity | 312 | sampling quadrats per grid\r\n\r\nshan: Shannon diversity | ||
313 | (\u2018vegan\u2019 package; Oksanen et al. 2019)\r\n\r\ncomp_bena: | 313 | (\u2018vegan\u2019 package; Oksanen et al. 2019)\r\n\r\ncomp_bena: | ||
314 | shrub competition on _Betula nana_ (i.e. summed cover of non-_B. nana_ | 314 | shrub competition on _Betula nana_ (i.e. summed cover of non-_B. nana_ | ||
315 | species) [% cover]\r\n\r\ncomp_sagl: shrub competition on _Salix | 315 | species) [% cover]\r\n\r\ncomp_sagl: shrub competition on _Salix | ||
316 | glauca_ (i.e. summed cover of non-_S. glauca_ species) [% | 316 | glauca_ (i.e. summed cover of non-_S. glauca_ species) [% | ||
317 | cover]\r\n\r\nht_cwm: maximum shrub canopy height (i.e. community | 317 | cover]\r\n\r\nht_cwm: maximum shrub canopy height (i.e. community | ||
318 | weighted mean by abundance of maximum shrub height) [mm]\r\n\r\n### | 318 | weighted mean by abundance of maximum shrub height) [mm]\r\n\r\n### | ||
319 | Topography and terrain wetness (calculated from)\r\n\r\ntcws: Tasseled | 319 | Topography and terrain wetness (calculated from)\r\n\r\ntcws: Tasseled | ||
320 | Cap Wetness component (Sentinal images)\r\n\r\nslope: slope angle | 320 | Cap Wetness component (Sentinal images)\r\n\r\nslope: slope angle | ||
321 | (MEaSUREs Greenland Ice Mapping Project Digital Elevation Model v. 1; | 321 | (MEaSUREs Greenland Ice Mapping Project Digital Elevation Model v. 1; | ||
322 | Howat et al., 2014, 2015) [\u00ba]\r\n\r\ntwi: SAGA wetness index | 322 | Howat et al., 2014, 2015) [\u00ba]\r\n\r\ntwi: SAGA wetness index | ||
323 | (MEaSUREs Greenland Ice Mapping Project Digital Elevation Model v. 1; | 323 | (MEaSUREs Greenland Ice Mapping Project Digital Elevation Model v. 1; | ||
324 | Howat et al., 2014, 2015)\r\n\r\nasp: aspect (MEaSUREs Greenland Ice | 324 | Howat et al., 2014, 2015)\r\n\r\nasp: aspect (MEaSUREs Greenland Ice | ||
325 | Mapping Project Digital Elevation Model v. 1; Howat et al., 2014, | 325 | Mapping Project Digital Elevation Model v. 1; Howat et al., 2014, | ||
326 | 2015) [\u00ba]\r\n\r\n### Downscaled climate (time series 1984 \u2013 | 326 | 2015) [\u00ba]\r\n\r\n### Downscaled climate (time series 1984 \u2013 | ||
327 | 2013)\r\n\r\ninsoljja: average June-August insolation [MJ cm-2 | 327 | 2013)\r\n\r\ninsoljja: average June-August insolation [MJ cm-2 | ||
328 | yr-1]\r\n\r\nprecipmam: cumulative March-May precipitation | 328 | yr-1]\r\n\r\nprecipmam: cumulative March-May precipitation | ||
329 | [mm]\r\n\r\ntempcont: yearly maximum \u2013 minimum temperature | 329 | [mm]\r\n\r\ntempcont: yearly maximum \u2013 minimum temperature | ||
330 | [\u00baC]\r\n\r\ntempmin: yearly minimum temperature | 330 | [\u00baC]\r\n\r\ntempmin: yearly minimum temperature | ||
331 | [\u00baC]\r\n\r\nprecipjja: cumulative June-August precipitation | 331 | [\u00baC]\r\n\r\nprecipjja: cumulative June-August precipitation | ||
332 | [mm]\r\n\r\ntempjja: average maximum June-August temperature | 332 | [mm]\r\n\r\ntempjja: average maximum June-August temperature | ||
333 | [\u00baC]\r\n\r\ntempmax: yearly maximum temperature [\u00baC]", | 333 | [\u00baC]\r\n\r\ntempmax: yearly maximum temperature [\u00baC]", | ||
334 | "doi": "", | 334 | "doi": "", | ||
335 | "format": ".csv", | 335 | "format": ".csv", | ||
336 | "hash": "", | 336 | "hash": "", | ||
337 | "id": "dc1bf94c-e651-4193-9a42-de3c9f3b11e9", | 337 | "id": "dc1bf94c-e651-4193-9a42-de3c9f3b11e9", | ||
338 | "last_modified": "2022-02-09T00:40:19.364433", | 338 | "last_modified": "2022-02-09T00:40:19.364433", | ||
339 | "metadata_modified": "2022-02-08T23:42:39.325242", | 339 | "metadata_modified": "2022-02-08T23:42:39.325242", | ||
340 | "mimetype": null, | 340 | "mimetype": null, | ||
341 | "mimetype_inner": null, | 341 | "mimetype_inner": null, | ||
342 | "name": "Kangerluarsunnguaq", | 342 | "name": "Kangerluarsunnguaq", | ||
343 | "package_id": "040d25dd-71c0-40e6-99a8-849427250f5d", | 343 | "package_id": "040d25dd-71c0-40e6-99a8-849427250f5d", | ||
344 | "position": 1, | 344 | "position": 1, | ||
345 | "publication_state": "", | 345 | "publication_state": "", | ||
346 | "resource_size": "{\"size_units\": \"kb\", \"size_value\": | 346 | "resource_size": "{\"size_units\": \"kb\", \"size_value\": | ||
347 | \"\"}", | 347 | \"\"}", | ||
348 | "resource_type": null, | 348 | "resource_type": null, | ||
349 | "restricted": "{\"allowed_users\": \"\", \"level\": \"public\", | 349 | "restricted": "{\"allowed_users\": \"\", \"level\": \"public\", | ||
350 | \"shared_secret\": \"\"}", | 350 | \"shared_secret\": \"\"}", | ||
351 | "size": 93883, | 351 | "size": 93883, | ||
352 | "state": "active", | 352 | "state": "active", | ||
353 | "url": | 353 | "url": | ||
354 | dc1bf94c-e651-4193-9a42-de3c9f3b11e9/download/kangerluarsunnguaq.csv", | 354 | dc1bf94c-e651-4193-9a42-de3c9f3b11e9/download/kangerluarsunnguaq.csv", | ||
355 | "url_type": "upload" | 355 | "url_type": "upload" | ||
356 | }, | 356 | }, | ||
357 | { | 357 | { | ||
358 | "cache_last_updated": null, | 358 | "cache_last_updated": null, | ||
359 | "cache_url": null, | 359 | "cache_url": null, | ||
360 | "created": "2022-02-08T23:51:21.002283", | 360 | "created": "2022-02-08T23:51:21.002283", | ||
361 | "description": "Zip drive of GitLab repository contents | 361 | "description": "Zip drive of GitLab repository contents | ||
362 | (https://gitlab.com/nathaliechardon/gl_microclim).", | 362 | (https://gitlab.com/nathaliechardon/gl_microclim).", | ||
363 | "doi": "", | 363 | "doi": "", | ||
364 | "format": ".zip", | 364 | "format": ".zip", | ||
365 | "hash": "", | 365 | "hash": "", | ||
366 | "id": "9a2b483b-baf7-40ff-98a2-faf92ef7b7a2", | 366 | "id": "9a2b483b-baf7-40ff-98a2-faf92ef7b7a2", | ||
367 | "last_modified": null, | 367 | "last_modified": null, | ||
368 | "metadata_modified": "2022-02-08T23:51:20.981660", | 368 | "metadata_modified": "2022-02-08T23:51:20.981660", | ||
369 | "mimetype": null, | 369 | "mimetype": null, | ||
370 | "mimetype_inner": null, | 370 | "mimetype_inner": null, | ||
371 | "name": "GitLab Repository", | 371 | "name": "GitLab Repository", | ||
372 | "package_id": "040d25dd-71c0-40e6-99a8-849427250f5d", | 372 | "package_id": "040d25dd-71c0-40e6-99a8-849427250f5d", | ||
373 | "position": 2, | 373 | "position": 2, | ||
374 | "publication_state": "", | 374 | "publication_state": "", | ||
375 | "resource_size": "{\"size_value\": \"\", \"size_units\": | 375 | "resource_size": "{\"size_value\": \"\", \"size_units\": | ||
376 | \"kb\"}", | 376 | \"kb\"}", | ||
377 | "resource_type": null, | 377 | "resource_type": null, | ||
378 | "restricted": "{\"level\": \"public\", \"allowed_users\": \"\", | 378 | "restricted": "{\"level\": \"public\", \"allowed_users\": \"\", | ||
379 | \"shared_secret\": \"\"}", | 379 | \"shared_secret\": \"\"}", | ||
380 | "size": 235019467, | 380 | "size": 235019467, | ||
381 | "state": "active", | 381 | "state": "active", | ||
382 | "url": | 382 | "url": | ||
383 | ource/9a2b483b-baf7-40ff-98a2-faf92ef7b7a2/download/gl_microclim.zip", | 383 | ource/9a2b483b-baf7-40ff-98a2-faf92ef7b7a2/download/gl_microclim.zip", | ||
384 | "url_type": "upload" | 384 | "url_type": "upload" | ||
385 | } | 385 | } | ||
386 | ], | 386 | ], | ||
387 | "spatial": "{\"type\":\"Polygon\",\"coordinates\":[[[-52.35655, | 387 | "spatial": "{\"type\":\"Polygon\",\"coordinates\":[[[-52.35655, | ||
388 | 65.01146],[-52.35655, 64.03434],[-49.71769, 64.03434],[-49.71769, | 388 | 65.01146],[-52.35655, 64.03434],[-49.71769, 64.03434],[-49.71769, | ||
389 | 65.01146]]]}", | 389 | 65.01146]]]}", | ||
390 | "spatial_info": "Greenland", | 390 | "spatial_info": "Greenland", | ||
391 | "state": "active", | 391 | "state": "active", | ||
392 | "subtitle": "", | 392 | "subtitle": "", | ||
393 | "tags": [ | 393 | "tags": [ | ||
394 | { | 394 | { | ||
395 | "display_name": "ACCESSIBLE SHRUB FOREST", | 395 | "display_name": "ACCESSIBLE SHRUB FOREST", | ||
396 | "id": "f68cf7be-7be1-4d42-ba37-a738dfbbccbd", | 396 | "id": "f68cf7be-7be1-4d42-ba37-a738dfbbccbd", | ||
397 | "name": "ACCESSIBLE SHRUB FOREST", | 397 | "name": "ACCESSIBLE SHRUB FOREST", | ||
398 | "state": "active", | 398 | "state": "active", | ||
399 | "vocabulary_id": null | 399 | "vocabulary_id": null | ||
400 | }, | 400 | }, | ||
401 | { | 401 | { | ||
402 | "display_name": "ARCTIC", | 402 | "display_name": "ARCTIC", | ||
403 | "id": "2b497a89-c6b1-4779-8ac5-066d8b4c4984", | 403 | "id": "2b497a89-c6b1-4779-8ac5-066d8b4c4984", | ||
404 | "name": "ARCTIC", | 404 | "name": "ARCTIC", | ||
405 | "state": "active", | 405 | "state": "active", | ||
406 | "vocabulary_id": null | 406 | "vocabulary_id": null | ||
407 | }, | 407 | }, | ||
408 | { | 408 | { | ||
409 | "display_name": "CLIMATE", | 409 | "display_name": "CLIMATE", | ||
410 | "id": "5a33b7dc-dca1-42c3-8651-9d00b5428823", | 410 | "id": "5a33b7dc-dca1-42c3-8651-9d00b5428823", | ||
411 | "name": "CLIMATE", | 411 | "name": "CLIMATE", | ||
412 | "state": "active", | 412 | "state": "active", | ||
413 | "vocabulary_id": null | 413 | "vocabulary_id": null | ||
414 | }, | 414 | }, | ||
415 | { | 415 | { | ||
416 | "display_name": "FIELD DATA", | 416 | "display_name": "FIELD DATA", | ||
417 | "id": "2eb3e96f-b26e-43be-9448-a64ba3b0e848", | 417 | "id": "2eb3e96f-b26e-43be-9448-a64ba3b0e848", | ||
418 | "name": "FIELD DATA", | 418 | "name": "FIELD DATA", | ||
419 | "state": "active", | 419 | "state": "active", | ||
420 | "vocabulary_id": null | 420 | "vocabulary_id": null | ||
421 | }, | 421 | }, | ||
422 | { | 422 | { | ||
423 | "display_name": "SDM", | 423 | "display_name": "SDM", | ||
424 | "id": "6ec2d7a6-c528-4a14-97d1-c8e30c159f2e", | 424 | "id": "6ec2d7a6-c528-4a14-97d1-c8e30c159f2e", | ||
425 | "name": "SDM", | 425 | "name": "SDM", | ||
426 | "state": "active", | 426 | "state": "active", | ||
427 | "vocabulary_id": null | 427 | "vocabulary_id": null | ||
428 | }, | 428 | }, | ||
429 | { | 429 | { | ||
430 | "display_name": "VALIDATION", | 430 | "display_name": "VALIDATION", | ||
431 | "id": "095f8766-ceca-409c-8206-81e0c0be2efa", | 431 | "id": "095f8766-ceca-409c-8206-81e0c0be2efa", | ||
432 | "name": "VALIDATION", | 432 | "name": "VALIDATION", | ||
433 | "state": "active", | 433 | "state": "active", | ||
434 | "vocabulary_id": null | 434 | "vocabulary_id": null | ||
435 | } | 435 | } | ||
436 | ], | 436 | ], | ||
437 | "title": "Greenland shrubs and microclimate", | 437 | "title": "Greenland shrubs and microclimate", | ||
438 | "type": "dataset", | 438 | "type": "dataset", | ||
439 | "url": null, | 439 | "url": null, | ||
440 | "version": "1.0" | 440 | "version": "1.0" | ||
441 | } | 441 | } |