Skip to content
Login has been disabled on EnviDat Legacy. Please log in via https://envidat.ch first, then refresh this page.

Changes

View changes from to


On April 29, 2021 at 6:46:24 AM UTC, Gravatar Administrator:
  • Updated description of Forest canopy structure data for radiation and snow modelling (CH/FIN) from

    This dataset contains forest canopy structure data acquired in a spruce forest at Laret, Switzerland, and a pine forest at Sodankylä, Finland. Data include: * Hemispherical photographs taken at transect intersection points of 13 experimental plots (40x40m each) * a Canopy Height Model (tree height map) derived by rasterizing airborne LiDAR data, encompassing the entire simulation domain at Laret (150'000 m2) These data provide the necessary basis for creating canopy structure datasets to be used as input to the forest snow snow model FSM2. These datasets, the model input derivatives and the radiation and snow modelling are described in detail in the following publication: _Mazzotti, G., Webster, C., Essery, R., and Jonas, T. (2021) Improving the physical representation of forest snow processes in coarse-resolution models: lessons learned from upscaling hyper-resolution simulations. Water Resources Research 57, e2020WR029064. doi: 10.1029/2020WR029064_ This publication must be cited when using the data. ### See also: For additional information on the FSM2 model, see the corresponding GitHub repository: https://github.com/GiuliaMazzotti/FSM2/tree/hyres_enhanced_canopy The datasets and the model have also been used in _Mazzotti et al. (2020) Process-level evaluation of a hyper-resolution forest snow model using distributed multi-sensor observations. doi: 10.1029/2020WR027572_
    to
    This dataset contains forest canopy structure data acquired in a spruce forest at Laret, Switzerland, and a pine forest at Sodankylä, Finland. Data include: * Hemispherical photographs taken at transect intersection points of 13 experimental plots (40x40m each) * a Canopy Height Model (tree height map) derived by rasterizing airborne LiDAR data, encompassing the entire simulation domain at Laret (150'000 m2) These data provide the necessary basis for creating canopy structure datasets to be used as input to the forest snow snow model FSM2. These datasets, the model input derivatives and the radiation and snow modelling are described in detail in the following publication: _Mazzotti, G., Webster, C., Essery, R., and Jonas, T. (2021) Improving the physical representation of forest snow processes in coarse-resolution models: lessons learned from upscaling hyper-resolution simulations. Water Resources Research 57, e2020WR029064. [doi: 10.1029/2020WR029064](https://doi.org/10.1029/2020WR029064) This publication must be cited when using the data. ### See also: For additional information on the FSM2 model, see the corresponding [GitHub repository](https://github.com/GiuliaMazzotti/FSM2/tree/hyres_enhanced_canopy) The datasets and the model have also been used in _Mazzotti et al. (2020) Process-level evaluation of a hyper-resolution forest snow model using distributed multi-sensor observations. [doi: 10.1029/2020WR027572](https://doi.org/10.1029/2020WR027572)