Changes
On March 4, 2025 at 10:59:31 AM UTC,
-
Changed the version of Tree species map of Switzerland to 1.0
f | 1 | { | f | 1 | { |
2 | "author": "[{\"given_name\": \"Tiziana\", \"name\": \"Koch\", | 2 | "author": "[{\"given_name\": \"Tiziana\", \"name\": \"Koch\", | ||
3 | \"email\": \"tiziana.li@t-online.de\", \"data_credit\": [], | 3 | \"email\": \"tiziana.li@t-online.de\", \"data_credit\": [], | ||
4 | \"identifier\": \"0000-0002-0195-4119\", \"affiliation\": \"Swiss | 4 | \"identifier\": \"0000-0002-0195-4119\", \"affiliation\": \"Swiss | ||
5 | Federal Research Institute WSL and University of Zurich\"}, | 5 | Federal Research Institute WSL and University of Zurich\"}, | ||
6 | {\"given_name\": \"Martina\", \"name\": \"Hobi\", \"email\": | 6 | {\"given_name\": \"Martina\", \"name\": \"Hobi\", \"email\": | ||
7 | \"martina.hobi@wsl.ch\", \"data_credit\": [\"supervision\", | 7 | \"martina.hobi@wsl.ch\", \"data_credit\": [\"supervision\", | ||
8 | \"publication\"], \"identifier\": \"\", \"affiliation\": \"Swiss | 8 | \"publication\"], \"identifier\": \"\", \"affiliation\": \"Swiss | ||
9 | Federal Research Institute WSL, Z\\u00fcrcherstrasse 111, 8903 | 9 | Federal Research Institute WSL, Z\\u00fcrcherstrasse 111, 8903 | ||
10 | Birmensdorf, Switzerland\"}, {\"given_name\": \"Felix\", \"name\": | 10 | Birmensdorf, Switzerland\"}, {\"given_name\": \"Felix\", \"name\": | ||
11 | \"Morsdorf\", \"email\": \"felix.morsdorf@geo.uzh.ch\", | 11 | \"Morsdorf\", \"email\": \"felix.morsdorf@geo.uzh.ch\", | ||
12 | \"data_credit\": [\"publication\", \"supervision\"], \"identifier\": | 12 | \"data_credit\": [\"publication\", \"supervision\"], \"identifier\": | ||
13 | \"\", \"affiliation\": \"University of Zurich\"}, {\"given_name\": | 13 | \"\", \"affiliation\": \"University of Zurich\"}, {\"given_name\": | ||
14 | \"Lars\", \"name\": \"Waser\", \"email\": \"lars.waser@wsl.ch\", | 14 | \"Lars\", \"name\": \"Waser\", \"email\": \"lars.waser@wsl.ch\", | ||
15 | \"data_credit\": [\"supervision\", \"publication\"], \"identifier\": | 15 | \"data_credit\": [\"supervision\", \"publication\"], \"identifier\": | ||
16 | \"D-5937-2011\", \"affiliation\": \"Swiss Federal Institute for | 16 | \"D-5937-2011\", \"affiliation\": \"Swiss Federal Institute for | ||
17 | Forest, Snow and Landscape Research WSL \"}]", | 17 | Forest, Snow and Landscape Research WSL \"}]", | ||
18 | "author_email": null, | 18 | "author_email": null, | ||
19 | "creator_user_id": "06333ba0-47fe-41e8-9b65-5945024eca8a", | 19 | "creator_user_id": "06333ba0-47fe-41e8-9b65-5945024eca8a", | ||
20 | "date": | 20 | "date": | ||
21 | :\"collected\",\"date\":\"2020-01-01\",\"end_date\":\"2020-12-31\"}]", | 21 | :\"collected\",\"date\":\"2020-01-01\",\"end_date\":\"2020-12-31\"}]", | ||
22 | "doi": "10.16904/envidat.506", | 22 | "doi": "10.16904/envidat.506", | ||
23 | "funding": "[{\"institution\":\"Swiss National Science | 23 | "funding": "[{\"institution\":\"Swiss National Science | ||
24 | tion\",\"grant_number\":\"200021_184605\",\"institution_url\":\"\"}]", | 24 | tion\",\"grant_number\":\"200021_184605\",\"institution_url\":\"\"}]", | ||
25 | "groups": [], | 25 | "groups": [], | ||
26 | "id": "bf5a19da-7b55-4149-8293-08fd0af29969", | 26 | "id": "bf5a19da-7b55-4149-8293-08fd0af29969", | ||
27 | "isopen": true, | 27 | "isopen": true, | ||
28 | "license_id": "cc-by-sa", | 28 | "license_id": "cc-by-sa", | ||
29 | "license_title": "Creative Commons Attribution Share-Alike | 29 | "license_title": "Creative Commons Attribution Share-Alike | ||
30 | (CC-BY-SA)", | 30 | (CC-BY-SA)", | ||
31 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | 31 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | ||
32 | "maintainer": | 32 | "maintainer": | ||
33 | "{\"email\":\"tiziana.li@t-online.de\",\"given_name\":\"Tiziana | 33 | "{\"email\":\"tiziana.li@t-online.de\",\"given_name\":\"Tiziana | ||
34 | Li\",\"name\":\"Koch\"}", | 34 | Li\",\"name\":\"Koch\"}", | ||
35 | "maintainer_email": null, | 35 | "maintainer_email": null, | ||
36 | "metadata_created": "2024-04-18T12:25:50.928090", | 36 | "metadata_created": "2024-04-18T12:25:50.928090", | ||
n | 37 | "metadata_modified": "2024-04-24T13:36:33.791875", | n | 37 | "metadata_modified": "2025-03-04T10:59:31.905900", |
38 | "name": "tree-species-map-of-switzerland", | 38 | "name": "tree-species-map-of-switzerland", | ||
39 | "notes": "\n# Dominant tree species map of Switzerland\nWe created a | 39 | "notes": "\n# Dominant tree species map of Switzerland\nWe created a | ||
40 | tree species map of Switzerland for the dominant tree species in the | 40 | tree species map of Switzerland for the dominant tree species in the | ||
41 | forested areas. The spatial resolution of the map is 10 m and the | 41 | forested areas. The spatial resolution of the map is 10 m and the | ||
42 | coordinate system is ETRS89-extended / LAEA Europe (EPSG 3035). The | 42 | coordinate system is ETRS89-extended / LAEA Europe (EPSG 3035). The | ||
43 | map comprises Sentinel-2 index time series from the year 2020, a | 43 | map comprises Sentinel-2 index time series from the year 2020, a | ||
44 | digital elevation model and species reference data from the Swiss | 44 | digital elevation model and species reference data from the Swiss | ||
45 | National Forest Inventory. The map is available as raster (.tif) or | 45 | National Forest Inventory. The map is available as raster (.tif) or | ||
46 | vector dataset (.gpkg). \n**Access will be granted upon | 46 | vector dataset (.gpkg). \n**Access will be granted upon | ||
47 | request.**\n\nIn total, the following 15 species were mapped: \n*Abies | 47 | request.**\n\nIn total, the following 15 species were mapped: \n*Abies | ||
48 | alba*, *Acer pseudoplatanus*, *Alnus glutinosa*, *Alnus incana*, | 48 | alba*, *Acer pseudoplatanus*, *Alnus glutinosa*, *Alnus incana*, | ||
49 | *Betula pendula*, *Castanea sativa*, *Fagus sylvatica*, *Fraxinus | 49 | *Betula pendula*, *Castanea sativa*, *Fagus sylvatica*, *Fraxinus | ||
50 | excelsior*, *Picea abies*, *Pinus cembra*, *Pinus mugo arborea*, | 50 | excelsior*, *Picea abies*, *Pinus cembra*, *Pinus mugo arborea*, | ||
51 | *Pinus sylvestris*, *Quercus petraea*, *Quercus robur*, *Sorbus | 51 | *Pinus sylvestris*, *Quercus petraea*, *Quercus robur*, *Sorbus | ||
52 | aucuparia*. \n\n\n<br/><br/>\n# Approach\n<br/><br/>\n### Data\n- | 52 | aucuparia*. \n\n\n<br/><br/>\n# Approach\n<br/><br/>\n### Data\n- | ||
53 | Swiss National Forest Inventory Data (stand species with > 60 % | 53 | Swiss National Forest Inventory Data (stand species with > 60 % | ||
54 | dominance in upper canopy; on at least more than 9 plots dominant)\n- | 54 | dominance in upper canopy; on at least more than 9 plots dominant)\n- | ||
55 | Sentinel-2 time series (2020, Indices: CCI, CIRE, NDMI, EVI, NDVI)\n- | 55 | Sentinel-2 time series (2020, Indices: CCI, CIRE, NDMI, EVI, NDVI)\n- | ||
56 | Digital elevation model (DEM) (swissalti3d, 5 m)\n- Biogeographical | 56 | Digital elevation model (DEM) (swissalti3d, 5 m)\n- Biogeographical | ||
57 | regions (Federal Office for the Environment FOEN)\n- Forest mask 2017 | 57 | regions (Federal Office for the Environment FOEN)\n- Forest mask 2017 | ||
58 | (Approach: Waser et al., 2015)\n\n<br/><br/>\n### Modeling | 58 | (Approach: Waser et al., 2015)\n\n<br/><br/>\n### Modeling | ||
59 | approach\nWe identified the most meaningful variables that led to | 59 | approach\nWe identified the most meaningful variables that led to | ||
60 | separation of the respective groups by using random forest models with | 60 | separation of the respective groups by using random forest models with | ||
61 | a forward feature selection (Meyer et al., 2018; Ververidis & | 61 | a forward feature selection (Meyer et al., 2018; Ververidis & | ||
62 | Kotropoulos, 2005). In this approach, the final random forest model is | 62 | Kotropoulos, 2005). In this approach, the final random forest model is | ||
63 | solely built from the selected meaningful variables. By identifying | 63 | solely built from the selected meaningful variables. By identifying | ||
64 | meaningful variables, we can determine which variables might influence | 64 | meaningful variables, we can determine which variables might influence | ||
65 | the grouping. Further, to avoid overfitting and overly optimistic | 65 | the grouping. Further, to avoid overfitting and overly optimistic | ||
66 | results, we applied 10-fold spatial cross-validation and put all | 66 | results, we applied 10-fold spatial cross-validation and put all | ||
67 | pixels from a plot in the same spatial fold.\nThe modeling was | 67 | pixels from a plot in the same spatial fold.\nThe modeling was | ||
68 | realized using the CAST package in R (Meyer et al., 2022), based on | 68 | realized using the CAST package in R (Meyer et al., 2022), based on | ||
69 | the well-known caret package (Kuhn, 2022). We used the ranger package | 69 | the well-known caret package (Kuhn, 2022). We used the ranger package | ||
70 | in R (Wright & Ziegler, 2017) to implement the random forest models, | 70 | in R (Wright & Ziegler, 2017) to implement the random forest models, | ||
71 | due to its short computation time.\n<br/><br/>\n### Training data for | 71 | due to its short computation time.\n<br/><br/>\n### Training data for | ||
72 | modeling\n- 295 Sentinel-2, DEM & Biogeographical variables\n- 10525 | 72 | modeling\n- 295 Sentinel-2, DEM & Biogeographical variables\n- 10525 | ||
73 | tree species pixels\n\n<br/><br/>\n\n### Selected variables for final | 73 | tree species pixels\n\n<br/><br/>\n\n### Selected variables for final | ||
74 | model\n1. EVI of 2020.05.16\n2. NDMI of 2020.03.12\n3. CIRE of | 74 | model\n1. EVI of 2020.05.16\n2. NDMI of 2020.03.12\n3. CIRE of | ||
75 | 2020.04.16\n4. NDMI of 2020.07.05\n5. CCI of 2020.05.11\n6. dem\n7. | 75 | 2020.04.16\n4. NDMI of 2020.07.05\n5. CCI of 2020.05.11\n6. dem\n7. | ||
76 | CCI of 2020.08.14\n8. NDMI of 2020.08.24\n9. CCI of 2020.12.22\n10. | 76 | CCI of 2020.08.14\n8. NDMI of 2020.08.24\n9. CCI of 2020.12.22\n10. | ||
77 | NDMI of 2020.04.21\n11. NDMI of 2020.11.17\n12. NDMI of | 77 | NDMI of 2020.04.21\n11. NDMI of 2020.11.17\n12. NDMI of | ||
78 | 2020.08.09\n13. CIRE of 2020.03.22\n14. CIRE of 2020.08.09\n14. CCI of | 78 | 2020.08.09\n13. CIRE of 2020.03.22\n14. CIRE of 2020.08.09\n14. CCI of | ||
79 | 2020.11.02\n15. CIRE of 2020.06.10\n\n<br/><br/>\t\n### Overall | 79 | 2020.11.02\n15. CIRE of 2020.06.10\n\n<br/><br/>\t\n### Overall | ||
80 | Accuracy of final model\n- 0.759\n\n<br/><br/>\n\n### Nationwide | 80 | Accuracy of final model\n- 0.759\n\n<br/><br/>\n\n### Nationwide | ||
81 | prediction\n- Predicted throughout forest mask 2017 (Approach: Waser | 81 | prediction\n- Predicted throughout forest mask 2017 (Approach: Waser | ||
82 | et al., 2015) \n- Not applied on incomplete Sentinel-2 time series | 82 | et al., 2015) \n- Not applied on incomplete Sentinel-2 time series | ||
83 | (own category in final map: incomplete_ts)\n- Applied the Area of | 83 | (own category in final map: incomplete_ts)\n- Applied the Area of | ||
84 | Applicability (Meyer 2022) to sort out pixels outside of the feature | 84 | Applicability (Meyer 2022) to sort out pixels outside of the feature | ||
85 | space; basically where the model had not the same values for pixels as | 85 | space; basically where the model had not the same values for pixels as | ||
86 | in the available training data\n\n\n<br/><br/>\n<br/><br/>\n## *Be | 86 | in the available training data\n\n\n<br/><br/>\n<br/><br/>\n## *Be | ||
87 | aware that the map is only validated with the training data itself, an | 87 | aware that the map is only validated with the training data itself, an | ||
88 | independent validation with other data sources remains missing* | 88 | independent validation with other data sources remains missing* | ||
89 | \n\n<br/><br/>\n<br/><br/>\n\n# References\n- Kuhn, M. (2022). | 89 | \n\n<br/><br/>\n<br/><br/>\n\n# References\n- Kuhn, M. (2022). | ||
90 | Classification and Regression Training. 6.0-93.\n\n- Meyer, H., | 90 | Classification and Regression Training. 6.0-93.\n\n- Meyer, H., | ||
91 | Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). *Improving | 91 | Reudenbach, C., Hengl, T., Katurji, M., & Nauss, T. (2018). *Improving | ||
92 | performance of spatio-temporal machine learning models using forward | 92 | performance of spatio-temporal machine learning models using forward | ||
93 | feature selection and target-oriented validation*. Environmental | 93 | feature selection and target-oriented validation*. Environmental | ||
94 | Modelling and Software, 101, 1-9. | 94 | Modelling and Software, 101, 1-9. | ||
95 | https://doi.org/10.1016/j.envsoft.2017.12.001 \n\n- Meyer, H., | 95 | https://doi.org/10.1016/j.envsoft.2017.12.001 \n\n- Meyer, H., | ||
96 | Mil\u00e0, C., & Ludwig, M. (2022). *CAST: 'caret' Applications for | 96 | Mil\u00e0, C., & Ludwig, M. (2022). *CAST: 'caret' Applications for | ||
97 | Spatial-Temporal Models*. 0.7.0.\n\n- Ververidis, D., & Kotropoulos, | 97 | Spatial-Temporal Models*. 0.7.0.\n\n- Ververidis, D., & Kotropoulos, | ||
98 | C. (2005). *Sequential forward feature selection with low | 98 | C. (2005). *Sequential forward feature selection with low | ||
99 | computational cost*. 2005 13th European Signal Processing Conference. | 99 | computational cost*. 2005 13th European Signal Processing Conference. | ||
100 | \n\n- Waser, L., Fischer, C.,Wang, Z., & Ginzler, C. (2015). | 100 | \n\n- Waser, L., Fischer, C.,Wang, Z., & Ginzler, C. (2015). | ||
101 | *Wall-to-Wall Forest Mapping Based on Digital Surface Models from | 101 | *Wall-to-Wall Forest Mapping Based on Digital Surface Models from | ||
102 | Image-Based Point Clouds and a NFI Forest Definition*. Forests, 6, 12, | 102 | Image-Based Point Clouds and a NFI Forest Definition*. Forests, 6, 12, | ||
103 | 4510\u20134528.\n\n- Wright, M. N., & Ziegler, A. (2017). *ranger: A | 103 | 4510\u20134528.\n\n- Wright, M. N., & Ziegler, A. (2017). *ranger: A | ||
104 | Fast Implementation of Random Forests for High Dimensional Data in C++ | 104 | Fast Implementation of Random Forests for High Dimensional Data in C++ | ||
105 | and R*. Journal of Statistical Software, 77(1), 1-17. | 105 | and R*. Journal of Statistical Software, 77(1), 1-17. | ||
106 | https://doi.org/doi:10.18637/jss.v077.i01 ", | 106 | https://doi.org/doi:10.18637/jss.v077.i01 ", | ||
107 | "num_resources": 1, | 107 | "num_resources": 1, | ||
108 | "num_tags": 5, | 108 | "num_tags": 5, | ||
109 | "organization": { | 109 | "organization": { | ||
110 | "approval_status": "approved", | 110 | "approval_status": "approved", | ||
111 | "created": "2017-04-20T16:51:21.920128", | 111 | "created": "2017-04-20T16:51:21.920128", | ||
112 | "description": "We develop and apply comprehensive and robust | 112 | "description": "We develop and apply comprehensive and robust | ||
113 | methods to extract and classify natural objects from continuous and | 113 | methods to extract and classify natural objects from continuous and | ||
114 | discrete raster datasets. Relevant features are acquired to describe | 114 | discrete raster datasets. Relevant features are acquired to describe | ||
115 | changes in landscape and land resources at different levels using | 115 | changes in landscape and land resources at different levels using | ||
116 | image data. Mathematical-statistical methods are adopted for automatic | 116 | image data. Mathematical-statistical methods are adopted for automatic | ||
117 | detection and description of image objects. Thus we contribute | 117 | detection and description of image objects. Thus we contribute | ||
118 | concepts, methods and data to describe/detect area wide changes and | 118 | concepts, methods and data to describe/detect area wide changes and | ||
119 | processes in the resources of landscape.\r\n\r\n### Tasks and main | 119 | processes in the resources of landscape.\r\n\r\n### Tasks and main | ||
120 | research\r\n\r\n* Development and application of methods to extract | 120 | research\r\n\r\n* Development and application of methods to extract | ||
121 | natural objects from continuous data.\r\n* Development of methods for | 121 | natural objects from continuous data.\r\n* Development of methods for | ||
122 | a comprehensive description of natural and anthropogenetic boundaries | 122 | a comprehensive description of natural and anthropogenetic boundaries | ||
123 | in continuous pattern (e.g. map signatures, vegetation transition, | 123 | in continuous pattern (e.g. map signatures, vegetation transition, | ||
124 | forest borders).\r\n* Development and application of methods to | 124 | forest borders).\r\n* Development and application of methods to | ||
125 | extract 3D-information from remotely sensed data for description of | 125 | extract 3D-information from remotely sensed data for description of | ||
126 | natural structures and changes. The main focus lies on wood and its | 126 | natural structures and changes. The main focus lies on wood and its | ||
127 | embedding/interaction within/with the landscape.\r\n* Conception and | 127 | embedding/interaction within/with the landscape.\r\n* Conception and | ||
128 | development of data acquisition based on high resolution remote | 128 | development of data acquisition based on high resolution remote | ||
129 | sensing data.\r\n* Conception, development and maintenance of the | 129 | sensing data.\r\n* Conception, development and maintenance of the | ||
130 | software interface in area wide data acquisition using airborne remote | 130 | software interface in area wide data acquisition using airborne remote | ||
131 | sensing data.\r\n* Scientific expert advice and support in the fields | 131 | sensing data.\r\n* Scientific expert advice and support in the fields | ||
132 | of photogrammetry and survey at WSL. Maintenance, enhancements and | 132 | of photogrammetry and survey at WSL. Maintenance, enhancements and | ||
133 | future development in these specific fields.\r\n* Adequate | 133 | future development in these specific fields.\r\n* Adequate | ||
134 | presentation of scientific results on national level and in noted | 134 | presentation of scientific results on national level and in noted | ||
135 | international journals and at international | 135 | international journals and at international | ||
136 | congresses/workshops/symposia.\r\n\r\n__Further information__: | 136 | congresses/workshops/symposia.\r\n\r\n__Further information__: | ||
137 | l/organization/research-units/landscape-dynamics/remote-sensing.html", | 137 | l/organization/research-units/landscape-dynamics/remote-sensing.html", | ||
138 | "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | 138 | "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | ||
n | 139 | "image_url": "2018-07-10-102816.481589LogoWSL.svg", | n | 139 | "image_url": "", |
140 | "is_organization": true, | 140 | "is_organization": true, | ||
141 | "name": "remote-sensing", | 141 | "name": "remote-sensing", | ||
142 | "state": "active", | 142 | "state": "active", | ||
143 | "title": "Remote Sensing", | 143 | "title": "Remote Sensing", | ||
144 | "type": "organization" | 144 | "type": "organization" | ||
145 | }, | 145 | }, | ||
146 | "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | 146 | "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | ||
147 | "private": false, | 147 | "private": false, | ||
148 | "publication": | 148 | "publication": | ||
149 | "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", | 149 | "{\"publisher\":\"EnviDat\",\"publication_year\":\"2024\"}", | ||
150 | "publication_state": "published", | 150 | "publication_state": "published", | ||
151 | "relationships_as_object": [], | 151 | "relationships_as_object": [], | ||
152 | "relationships_as_subject": [], | 152 | "relationships_as_subject": [], | ||
153 | "resource_type": "dataset", | 153 | "resource_type": "dataset", | ||
154 | "resource_type_general": "dataset", | 154 | "resource_type_general": "dataset", | ||
155 | "resources": [ | 155 | "resources": [ | ||
156 | { | 156 | { | ||
157 | "cache_last_updated": null, | 157 | "cache_last_updated": null, | ||
158 | "cache_url": null, | 158 | "cache_url": null, | ||
159 | "created": "2024-04-18T12:29:04.782844", | 159 | "created": "2024-04-18T12:29:04.782844", | ||
160 | "description": "Image of the tree species map", | 160 | "description": "Image of the tree species map", | ||
161 | "doi": "", | 161 | "doi": "", | ||
162 | "format": "PNG", | 162 | "format": "PNG", | ||
163 | "hash": "", | 163 | "hash": "", | ||
164 | "id": "4645f173-dded-4fff-9fb0-d8513ea8be6f", | 164 | "id": "4645f173-dded-4fff-9fb0-d8513ea8be6f", | ||
165 | "last_modified": "2024-04-18T14:34:06.462000", | 165 | "last_modified": "2024-04-18T14:34:06.462000", | ||
166 | "metadata_modified": "2024-04-18T12:34:07.279920", | 166 | "metadata_modified": "2024-04-18T12:34:07.279920", | ||
167 | "mimetype": "image/png", | 167 | "mimetype": "image/png", | ||
168 | "mimetype_inner": null, | 168 | "mimetype_inner": null, | ||
169 | "name": "map.png", | 169 | "name": "map.png", | ||
170 | "package_id": "bf5a19da-7b55-4149-8293-08fd0af29969", | 170 | "package_id": "bf5a19da-7b55-4149-8293-08fd0af29969", | ||
171 | "position": 0, | 171 | "position": 0, | ||
172 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 172 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
173 | "resource_type": null, | 173 | "resource_type": null, | ||
174 | "restricted": | 174 | "restricted": | ||
175 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 175 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
176 | "size": 5638141, | 176 | "size": 5638141, | ||
177 | "state": "active", | 177 | "state": "active", | ||
178 | "url": | 178 | "url": | ||
179 | 29969/resource/4645f173-dded-4fff-9fb0-d8513ea8be6f/download/map.png", | 179 | 29969/resource/4645f173-dded-4fff-9fb0-d8513ea8be6f/download/map.png", | ||
180 | "url_type": "upload" | 180 | "url_type": "upload" | ||
181 | } | 181 | } | ||
182 | ], | 182 | ], | ||
183 | "spatial": | 183 | "spatial": | ||
184 | 838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}]}", | 184 | 838],[10.49203,47.80838],[10.49203,45.81802],[5.95587,45.81802]]]}]}", | ||
185 | "state": "active", | 185 | "state": "active", | ||
186 | "subtitle": "", | 186 | "subtitle": "", | ||
187 | "tags": [ | 187 | "tags": [ | ||
188 | { | 188 | { | ||
189 | "display_name": "FOREST", | 189 | "display_name": "FOREST", | ||
190 | "id": "90cd0d8f-8df0-4b78-ac11-6e38c2a22106", | 190 | "id": "90cd0d8f-8df0-4b78-ac11-6e38c2a22106", | ||
191 | "name": "FOREST", | 191 | "name": "FOREST", | ||
192 | "state": "active", | 192 | "state": "active", | ||
193 | "vocabulary_id": null | 193 | "vocabulary_id": null | ||
194 | }, | 194 | }, | ||
195 | { | 195 | { | ||
196 | "display_name": "MAP", | 196 | "display_name": "MAP", | ||
197 | "id": "10a67a95-a99d-4c87-b929-3439a5979f4f", | 197 | "id": "10a67a95-a99d-4c87-b929-3439a5979f4f", | ||
198 | "name": "MAP", | 198 | "name": "MAP", | ||
199 | "state": "active", | 199 | "state": "active", | ||
200 | "vocabulary_id": null | 200 | "vocabulary_id": null | ||
201 | }, | 201 | }, | ||
202 | { | 202 | { | ||
203 | "display_name": "REMOTE SENSING", | 203 | "display_name": "REMOTE SENSING", | ||
204 | "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", | 204 | "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", | ||
205 | "name": "REMOTE SENSING", | 205 | "name": "REMOTE SENSING", | ||
206 | "state": "active", | 206 | "state": "active", | ||
207 | "vocabulary_id": null | 207 | "vocabulary_id": null | ||
208 | }, | 208 | }, | ||
209 | { | 209 | { | ||
210 | "display_name": "SWITZERLAND", | 210 | "display_name": "SWITZERLAND", | ||
211 | "id": "97ac3564-bb88-46ad-9fe4-b7d606e0aa3a", | 211 | "id": "97ac3564-bb88-46ad-9fe4-b7d606e0aa3a", | ||
212 | "name": "SWITZERLAND", | 212 | "name": "SWITZERLAND", | ||
213 | "state": "active", | 213 | "state": "active", | ||
214 | "vocabulary_id": null | 214 | "vocabulary_id": null | ||
215 | }, | 215 | }, | ||
216 | { | 216 | { | ||
217 | "display_name": "TREE SPECIES", | 217 | "display_name": "TREE SPECIES", | ||
218 | "id": "f02ee441-6d4d-4a02-888e-31588461d7c9", | 218 | "id": "f02ee441-6d4d-4a02-888e-31588461d7c9", | ||
219 | "name": "TREE SPECIES", | 219 | "name": "TREE SPECIES", | ||
220 | "state": "active", | 220 | "state": "active", | ||
221 | "vocabulary_id": null | 221 | "vocabulary_id": null | ||
222 | } | 222 | } | ||
223 | ], | 223 | ], | ||
224 | "title": "Tree species map of Switzerland", | 224 | "title": "Tree species map of Switzerland", | ||
225 | "type": "dataset", | 225 | "type": "dataset", | ||
t | 226 | "url": null | t | 226 | "url": null, |
227 | "version": "1.0" | ||||
227 | } | 228 | } |