Changes
On March 10, 2025 at 7:40:59 PM UTC,
-
Added tag BROADLEAF PROBABILITY to Forest Type NFI
f | 1 | { | f | 1 | { |
2 | "author": "[{\"affiliation\": \"Swiss Federal Institute for Forest, | 2 | "author": "[{\"affiliation\": \"Swiss Federal Institute for Forest, | ||
3 | Snow and Landscape Research WSL \", \"affiliation_02\": \"\", | 3 | Snow and Landscape Research WSL \", \"affiliation_02\": \"\", | ||
4 | \"affiliation_03\": \"\", \"email\": \"lars.waser@wsl.ch\", | 4 | \"affiliation_03\": \"\", \"email\": \"lars.waser@wsl.ch\", | ||
5 | \"given_name\": \"Lars\", \"identifier\": \"D-5937-2011\", \"name\": | 5 | \"given_name\": \"Lars\", \"identifier\": \"D-5937-2011\", \"name\": | ||
6 | \"Waser\"}, {\"affiliation\": \"Swiss Federal Institute for Forest, | 6 | \"Waser\"}, {\"affiliation\": \"Swiss Federal Institute for Forest, | ||
7 | Snow and Landscape Research WSL \", \"affiliation_02\": \"\", | 7 | Snow and Landscape Research WSL \", \"affiliation_02\": \"\", | ||
8 | \"affiliation_03\": \"\", \"email\": \"christian.ginzler@wsl.ch\", | 8 | \"affiliation_03\": \"\", \"email\": \"christian.ginzler@wsl.ch\", | ||
9 | \"given_name\": \"Christian\", \"identifier\": \"E-9544-2012\", | 9 | \"given_name\": \"Christian\", \"identifier\": \"E-9544-2012\", | ||
10 | \"name\": \"Ginzler\"}, {\"affiliation\": \"WSL\", \"affiliation_02\": | 10 | \"name\": \"Ginzler\"}, {\"affiliation\": \"WSL\", \"affiliation_02\": | ||
11 | \"\", \"affiliation_03\": \"\", \"email\": | 11 | \"\", \"affiliation_03\": \"\", \"email\": | ||
12 | \"achilleas.psomas@wsl.ch\", \"given_name\": \"Achilleas\", | 12 | \"achilleas.psomas@wsl.ch\", \"given_name\": \"Achilleas\", | ||
13 | \"identifier\": \"\", \"name\": \"Psomas\"}, {\"affiliation\": | 13 | \"identifier\": \"\", \"name\": \"Psomas\"}, {\"affiliation\": | ||
14 | \"WSL\", \"affiliation_02\": \"\", \"affiliation_03\": \"\", | 14 | \"WSL\", \"affiliation_02\": \"\", \"affiliation_03\": \"\", | ||
15 | \"email\": \"marius.rueetschi@wsl.ch\", \"given_name\": \"Marius\", | 15 | \"email\": \"marius.rueetschi@wsl.ch\", \"given_name\": \"Marius\", | ||
16 | \"identifier\": \"\", \"name\": \"R\\u00fcetschi\"}, {\"affiliation\": | 16 | \"identifier\": \"\", \"name\": \"R\\u00fcetschi\"}, {\"affiliation\": | ||
17 | \"WSL\", \"affiliation_02\": \"\", \"affiliation_03\": \"\", | 17 | \"WSL\", \"affiliation_02\": \"\", \"affiliation_03\": \"\", | ||
18 | \"email\": \"nataliia.rehush@wsl.ch\", \"given_name\": \"Nataliia\", | 18 | \"email\": \"nataliia.rehush@wsl.ch\", \"given_name\": \"Nataliia\", | ||
19 | \"identifier\": \"\", \"name\": \"Rehush\"}]", | 19 | \"identifier\": \"\", \"name\": \"Rehush\"}]", | ||
20 | "author_email": null, | 20 | "author_email": null, | ||
21 | "creator_user_id": "6d44d5cd-9ac6-4100-bc2c-c02034a41b48", | 21 | "creator_user_id": "6d44d5cd-9ac6-4100-bc2c-c02034a41b48", | ||
22 | "date": "[{\"date\": \"2025-01-05\", \"date_type\": \"created\", | 22 | "date": "[{\"date\": \"2025-01-05\", \"date_type\": \"created\", | ||
23 | \"end_date\": \"\"}]", | 23 | \"end_date\": \"\"}]", | ||
24 | "doi": "10.16904/1000001.7", | 24 | "doi": "10.16904/1000001.7", | ||
25 | "extras": [ | 25 | "extras": [ | ||
26 | { | 26 | { | ||
27 | "key": "deprecatedResources", | 27 | "key": "deprecatedResources", | ||
28 | "value": | 28 | "value": | ||
29 | ac-4bfd-936d-89c0a56eed36\",\"7b6e4f37-c428-45dc-ba34-f40dd8368769\"]" | 29 | ac-4bfd-936d-89c0a56eed36\",\"7b6e4f37-c428-45dc-ba34-f40dd8368769\"]" | ||
30 | } | 30 | } | ||
31 | ], | 31 | ], | ||
32 | "funding": "[{\"grant_number\":\"\",\"institution\":\"Federal Office | 32 | "funding": "[{\"grant_number\":\"\",\"institution\":\"Federal Office | ||
33 | for the Environment (FOEN).\",\"institution_url\":\"\"}]", | 33 | for the Environment (FOEN).\",\"institution_url\":\"\"}]", | ||
34 | "groups": [], | 34 | "groups": [], | ||
35 | "id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 35 | "id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
36 | "isopen": false, | 36 | "isopen": false, | ||
37 | "language": "en", | 37 | "language": "en", | ||
38 | "license_id": "other-undefined", | 38 | "license_id": "other-undefined", | ||
39 | "license_title": "Other (Specified in the description)", | 39 | "license_title": "Other (Specified in the description)", | ||
40 | "maintainer": "{\"affiliation\": \"Swiss Federal Institute for | 40 | "maintainer": "{\"affiliation\": \"Swiss Federal Institute for | ||
41 | Forest, Snow and Landscape Research WSL \", \"email\": | 41 | Forest, Snow and Landscape Research WSL \", \"email\": | ||
42 | \"lars.waser@wsl.ch\", \"given_name\": \"Lars\", \"identifier\": | 42 | \"lars.waser@wsl.ch\", \"given_name\": \"Lars\", \"identifier\": | ||
43 | \"D-5937-2011\", \"name\": \"Waser\"}", | 43 | \"D-5937-2011\", \"name\": \"Waser\"}", | ||
44 | "maintainer_email": null, | 44 | "maintainer_email": null, | ||
45 | "metadata_created": "2018-04-03T10:38:30.545175", | 45 | "metadata_created": "2018-04-03T10:38:30.545175", | ||
n | 46 | "metadata_modified": "2025-03-10T19:40:26.291700", | n | 46 | "metadata_modified": "2025-03-10T19:40:59.068107", |
47 | "name": "forest-type-nfi", | 47 | "name": "forest-type-nfi", | ||
48 | "notes": "A series of Forest Type NFI datasets covering Switzerland | 48 | "notes": "A series of Forest Type NFI datasets covering Switzerland | ||
49 | have been produced, and currently available for the years 2023, 2018, | 49 | have been produced, and currently available for the years 2023, 2018, | ||
50 | and 2016. These datasets provide the probability (0-100%) of the class | 50 | and 2016. These datasets provide the probability (0-100%) of the class | ||
51 | broadleaf at the pixel level. While 0% probability corresponds to the | 51 | broadleaf at the pixel level. While 0% probability corresponds to the | ||
52 | pure class coniferous, 100% correspond to the class pure broadleaf. | 52 | pure class coniferous, 100% correspond to the class pure broadleaf. | ||
53 | Values around 50% probability weren't assigned to one of the two | 53 | Values around 50% probability weren't assigned to one of the two | ||
54 | classes and might belong to mixed stands. The three datasets are based | 54 | classes and might belong to mixed stands. The three datasets are based | ||
55 | on different remote sensing data from different time spans and with | 55 | on different remote sensing data from different time spans and with | ||
56 | different spatial resolutions:\n\n- **Forest Type NFI 2023: | 56 | different spatial resolutions:\n\n- **Forest Type NFI 2023: | ||
57 | Sentinel-1/-2, 2021-2023, 10m (new dataset!)** \n- Forest Type NFI | 57 | Sentinel-1/-2, 2021-2023, 10m (new dataset!)** \n- Forest Type NFI | ||
58 | 2018: Sentinel-1/-2, 2016-2018, 10m\n- Forest Type NFI 2016: Aerial | 58 | 2018: Sentinel-1/-2, 2016-2018, 10m\n- Forest Type NFI 2016: Aerial | ||
59 | orthoimages, 2010-2015, 3m\n.\n---------------------\n.\n **Important | 59 | orthoimages, 2010-2015, 3m\n.\n---------------------\n.\n **Important | ||
60 | note:** None of the datasets is suitable for analysis at the | 60 | note:** None of the datasets is suitable for analysis at the | ||
61 | individual tree crown level because pixel-level probabilities are not | 61 | individual tree crown level because pixel-level probabilities are not | ||
62 | allocated to individual trees. Analysis is recommended only for areas | 62 | allocated to individual trees. Analysis is recommended only for areas | ||
63 | larger than 3x3 pixels, i.e. by calculating the mean values, except in | 63 | larger than 3x3 pixels, i.e. by calculating the mean values, except in | ||
64 | rare cases of homogeneous forest stands (either broadleaf or | 64 | rare cases of homogeneous forest stands (either broadleaf or | ||
65 | coniferous class).\n\n**User\u2019s feedback:** \nWe are very | 65 | coniferous class).\n\n**User\u2019s feedback:** \nWe are very | ||
66 | motivated to improve the dataset further and welcome any feedback or | 66 | motivated to improve the dataset further and welcome any feedback or | ||
67 | suggestions for corrections. Feel free to directly contact | 67 | suggestions for corrections. Feel free to directly contact | ||
68 | **lars.waser@wsl.ch**\n_________________\n.\n*Detailed | 68 | **lars.waser@wsl.ch**\n_________________\n.\n*Detailed | ||
69 | description:*\n\n**Forest Type NFI datasets, versions 2023 and 2018:** | 69 | description:*\n\n**Forest Type NFI datasets, versions 2023 and 2018:** | ||
70 | Both datasets use a remote sensing-based approach for a countrywide | 70 | Both datasets use a remote sensing-based approach for a countrywide | ||
71 | mapping of the Dominant Leaf Type (DLT) in Switzerland, classifying | 71 | mapping of the Dominant Leaf Type (DLT) in Switzerland, classifying | ||
72 | areas as either broadleaf or coniferous. These datasets have a spatial | 72 | areas as either broadleaf or coniferous. These datasets have a spatial | ||
73 | resolution of 10 m and provide the probability (0-100%) of the class | 73 | resolution of 10 m and provide the probability (0-100%) of the class | ||
74 | broadleaf at the pixel level (covering all areas with vegetation | 74 | broadleaf at the pixel level (covering all areas with vegetation | ||
75 | height > 5m version 2018, and >3 m version 2023). The classification | 75 | height > 5m version 2018, and >3 m version 2023). The classification | ||
76 | approach is based on a Random Forest (RF) classifier, that combines | 76 | approach is based on a Random Forest (RF) classifier, that combines | ||
77 | predictors derived from multi-temporal Sentinel-1 and Sentinel-2 data | 77 | predictors derived from multi-temporal Sentinel-1 and Sentinel-2 data | ||
78 | with the SwissAlti3D terrain model. In addition to the original | 78 | with the SwissAlti3D terrain model. In addition to the original | ||
79 | Sentinel-2 spectral bands, vegetation indices such as GEMI, MSAVI2, | 79 | Sentinel-2 spectral bands, vegetation indices such as GEMI, MSAVI2, | ||
80 | NDVI, CLRE and CCCI were used in the final model.\nThe classification | 80 | NDVI, CLRE and CCCI were used in the final model.\nThe classification | ||
81 | models were tested, trained and validated using up to 400,000 labels | 81 | models were tested, trained and validated using up to 400,000 labels | ||
82 | representing the two classes broadleaf and coniferous, derived from | 82 | representing the two classes broadleaf and coniferous, derived from | ||
83 | aerial image delineations. For the 2023 data set, the previously used | 83 | aerial image delineations. For the 2023 data set, the previously used | ||
84 | labels were quality-checked for reliability and temporal consistency | 84 | labels were quality-checked for reliability and temporal consistency | ||
85 | with the image data. Additionally, more labels were collected in the | 85 | with the image data. Additionally, more labels were collected in the | ||
86 | regions where the previous version of the data set performed less | 86 | regions where the previous version of the data set performed less | ||
87 | accurately \u2013 as reported by the users.\nSimilar high model | 87 | accurately \u2013 as reported by the users.\nSimilar high model | ||
88 | performances were achieved for both data sets: overall accuracy = | 88 | performances were achieved for both data sets: overall accuracy = | ||
89 | 0.96, kappa = 0.94, F1-score =0.96, precision = 0.97, recall = 0.94 | 89 | 0.96, kappa = 0.94, F1-score =0.96, precision = 0.97, recall = 0.94 | ||
90 | (2023), 0.95 (2018). Independent validation and plausibility check | 90 | (2023), 0.95 (2018). Independent validation and plausibility check | ||
91 | included the comparison of the predicted results with aerial image | 91 | included the comparison of the predicted results with aerial image | ||
92 | interpretations of the National Forest Inventory (NFI). For both data | 92 | interpretations of the National Forest Inventory (NFI). For both data | ||
93 | sets, deviations particularly occurred in mixed forest stands: over | 93 | sets, deviations particularly occurred in mixed forest stands: over | ||
94 | all accuracy = 0.81 (2018, 2023), kappa = 0.62 (2018), 0.59 (2023). | 94 | all accuracy = 0.81 (2018, 2023), kappa = 0.62 (2018), 0.59 (2023). | ||
95 | For more details, see Waser et al. (2021).\n\n**The Forest Type NFI | 95 | For more details, see Waser et al. (2021).\n\n**The Forest Type NFI | ||
96 | dataset, version 2016:** This dataset presents a countrywide map with | 96 | dataset, version 2016:** This dataset presents a countrywide map with | ||
97 | the two classes broadleaf and coniferous in Switzerland based on | 97 | the two classes broadleaf and coniferous in Switzerland based on | ||
98 | digital aerial imagery. The spatial resolution of the data set is 3 m. | 98 | digital aerial imagery. The spatial resolution of the data set is 3 m. | ||
99 | The pixel values correspond to the probabilities (0-100 %) of the | 99 | The pixel values correspond to the probabilities (0-100 %) of the | ||
100 | class broadleaf.\nThe classification approach incorporates a RF | 100 | class broadleaf.\nThe classification approach incorporates a RF | ||
101 | classifier, predictors from multispectral aerial imagery (ADS80) and | 101 | classifier, predictors from multispectral aerial imagery (ADS80) and | ||
102 | the SwissAlti3D terrain model. The model was tested, trained and | 102 | the SwissAlti3D terrain model. The model was tested, trained and | ||
103 | validated using 90,000 digitized polygons and achieved an overall | 103 | validated using 90,000 digitized polygons and achieved an overall | ||
104 | accuracy of 0.99 and a kappa of 0.98. Independent validation and | 104 | accuracy of 0.99 and a kappa of 0.98. Independent validation and | ||
105 | plausibility check included the comparison of the predicted results | 105 | plausibility check included the comparison of the predicted results | ||
106 | with aerial image interpretations of the NFI. Significant deviations | 106 | with aerial image interpretations of the NFI. Significant deviations | ||
107 | were observed, primarily due to an underestimation of broadleaved | 107 | were observed, primarily due to an underestimation of broadleaved | ||
108 | trees (median underestimation of 3.17%), especially in mixed forest | 108 | trees (median underestimation of 3.17%), especially in mixed forest | ||
109 | stands. For more details, see Waser et al. (2017; | 109 | stands. For more details, see Waser et al. (2017; | ||
110 | https://doi.org/10.3390/rs9080766).\n\n", | 110 | https://doi.org/10.3390/rs9080766).\n\n", | ||
111 | "num_resources": 7, | 111 | "num_resources": 7, | ||
n | 112 | "num_tags": 6, | n | 112 | "num_tags": 7, |
113 | "organization": { | 113 | "organization": { | ||
114 | "approval_status": "approved", | 114 | "approval_status": "approved", | ||
115 | "created": "2017-04-20T16:51:21.920128", | 115 | "created": "2017-04-20T16:51:21.920128", | ||
116 | "description": "We develop and apply comprehensive and robust | 116 | "description": "We develop and apply comprehensive and robust | ||
117 | methods to extract and classify natural objects from continuous and | 117 | methods to extract and classify natural objects from continuous and | ||
118 | discrete raster datasets. Relevant features are acquired to describe | 118 | discrete raster datasets. Relevant features are acquired to describe | ||
119 | changes in landscape and land resources at different levels using | 119 | changes in landscape and land resources at different levels using | ||
120 | image data. Mathematical-statistical methods are adopted for automatic | 120 | image data. Mathematical-statistical methods are adopted for automatic | ||
121 | detection and description of image objects. Thus we contribute | 121 | detection and description of image objects. Thus we contribute | ||
122 | concepts, methods and data to describe/detect area wide changes and | 122 | concepts, methods and data to describe/detect area wide changes and | ||
123 | processes in the resources of landscape.\r\n\r\n### Tasks and main | 123 | processes in the resources of landscape.\r\n\r\n### Tasks and main | ||
124 | research\r\n\r\n* Development and application of methods to extract | 124 | research\r\n\r\n* Development and application of methods to extract | ||
125 | natural objects from continuous data.\r\n* Development of methods for | 125 | natural objects from continuous data.\r\n* Development of methods for | ||
126 | a comprehensive description of natural and anthropogenetic boundaries | 126 | a comprehensive description of natural and anthropogenetic boundaries | ||
127 | in continuous pattern (e.g. map signatures, vegetation transition, | 127 | in continuous pattern (e.g. map signatures, vegetation transition, | ||
128 | forest borders).\r\n* Development and application of methods to | 128 | forest borders).\r\n* Development and application of methods to | ||
129 | extract 3D-information from remotely sensed data for description of | 129 | extract 3D-information from remotely sensed data for description of | ||
130 | natural structures and changes. The main focus lies on wood and its | 130 | natural structures and changes. The main focus lies on wood and its | ||
131 | embedding/interaction within/with the landscape.\r\n* Conception and | 131 | embedding/interaction within/with the landscape.\r\n* Conception and | ||
132 | development of data acquisition based on high resolution remote | 132 | development of data acquisition based on high resolution remote | ||
133 | sensing data.\r\n* Conception, development and maintenance of the | 133 | sensing data.\r\n* Conception, development and maintenance of the | ||
134 | software interface in area wide data acquisition using airborne remote | 134 | software interface in area wide data acquisition using airborne remote | ||
135 | sensing data.\r\n* Scientific expert advice and support in the fields | 135 | sensing data.\r\n* Scientific expert advice and support in the fields | ||
136 | of photogrammetry and survey at WSL. Maintenance, enhancements and | 136 | of photogrammetry and survey at WSL. Maintenance, enhancements and | ||
137 | future development in these specific fields.\r\n* Adequate | 137 | future development in these specific fields.\r\n* Adequate | ||
138 | presentation of scientific results on national level and in noted | 138 | presentation of scientific results on national level and in noted | ||
139 | international journals and at international | 139 | international journals and at international | ||
140 | congresses/workshops/symposia.\r\n\r\n__Further information__: | 140 | congresses/workshops/symposia.\r\n\r\n__Further information__: | ||
141 | l/organization/research-units/landscape-dynamics/remote-sensing.html", | 141 | l/organization/research-units/landscape-dynamics/remote-sensing.html", | ||
142 | "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | 142 | "id": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | ||
143 | "image_url": "", | 143 | "image_url": "", | ||
144 | "is_organization": true, | 144 | "is_organization": true, | ||
145 | "name": "remote-sensing", | 145 | "name": "remote-sensing", | ||
146 | "state": "active", | 146 | "state": "active", | ||
147 | "title": "Remote Sensing", | 147 | "title": "Remote Sensing", | ||
148 | "type": "organization" | 148 | "type": "organization" | ||
149 | }, | 149 | }, | ||
150 | "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | 150 | "owner_org": "5243fbb4-e4e6-4779-9672-32a7ef33d5f9", | ||
151 | "private": false, | 151 | "private": false, | ||
152 | "publication": "{\"publication_year\": \"2025\", \"publisher\": | 152 | "publication": "{\"publication_year\": \"2025\", \"publisher\": | ||
153 | \"National Forest Inventory (NFI)\"}", | 153 | \"National Forest Inventory (NFI)\"}", | ||
154 | "publication_state": "published", | 154 | "publication_state": "published", | ||
155 | "related_datasets": "", | 155 | "related_datasets": "", | ||
156 | "related_publications": "wsl:28243\nWaser, L. T., Ginzler, C., & | 156 | "related_publications": "wsl:28243\nWaser, L. T., Ginzler, C., & | ||
157 | Rehush, N. (2017). Wall-to-wall tree type mapping from countrywide | 157 | Rehush, N. (2017). Wall-to-wall tree type mapping from countrywide | ||
158 | airborne remote sensing surveys. Remote Sensing, 9(8), 766 (24 pp.). | 158 | airborne remote sensing surveys. Remote Sensing, 9(8), 766 (24 pp.). | ||
159 | https://doi.org/10.3390/rs9080766", | 159 | https://doi.org/10.3390/rs9080766", | ||
160 | "relationships_as_object": [], | 160 | "relationships_as_object": [], | ||
161 | "relationships_as_subject": [], | 161 | "relationships_as_subject": [], | ||
162 | "resource_type": "dataset", | 162 | "resource_type": "dataset", | ||
163 | "resource_type_general": "dataset", | 163 | "resource_type_general": "dataset", | ||
164 | "resources": [ | 164 | "resources": [ | ||
165 | { | 165 | { | ||
166 | "cache_last_updated": null, | 166 | "cache_last_updated": null, | ||
167 | "cache_url": null, | 167 | "cache_url": null, | ||
168 | "created": "2021-04-23T08:02:00.149511", | 168 | "created": "2021-04-23T08:02:00.149511", | ||
169 | "description": "\n **Important note:** This dataset is NOT | 169 | "description": "\n **Important note:** This dataset is NOT | ||
170 | suitable for analysis at the individual tree crown level because | 170 | suitable for analysis at the individual tree crown level because | ||
171 | pixel-level fractions (e.g., of the broadleaf class) are not allocated | 171 | pixel-level fractions (e.g., of the broadleaf class) are not allocated | ||
172 | to individual trees. Analysis is recommended only for areas larger | 172 | to individual trees. Analysis is recommended only for areas larger | ||
173 | than 3x3 pixels, i.e. by calculating the mean values, except in rare | 173 | than 3x3 pixels, i.e. by calculating the mean values, except in rare | ||
174 | cases of homogeneous forest stands (either broadleaf or coniferous | 174 | cases of homogeneous forest stands (either broadleaf or coniferous | ||
175 | class). \n\nThis dataset uses a remote sensing-based approach for a | 175 | class). \n\nThis dataset uses a remote sensing-based approach for a | ||
176 | countrywide mapping of the Dominant Leaf Type (DLT) in Switzerland, | 176 | countrywide mapping of the Dominant Leaf Type (DLT) in Switzerland, | ||
177 | classifying areas as either broadleaf or coniferous. These datasets | 177 | classifying areas as either broadleaf or coniferous. These datasets | ||
178 | have a spatial resolution of 10 m and provide the fractional | 178 | have a spatial resolution of 10 m and provide the fractional | ||
179 | representation (0-100%) of the class broadleaf at the pixel level | 179 | representation (0-100%) of the class broadleaf at the pixel level | ||
180 | (covering areas with vegetation height > 5m).\nThe classification | 180 | (covering areas with vegetation height > 5m).\nThe classification | ||
181 | approach is based on a Random Forest (RF) classifier, that combines | 181 | approach is based on a Random Forest (RF) classifier, that combines | ||
182 | predictors derived from multi-temporal Sentinel-1 and Sentinel-2 data | 182 | predictors derived from multi-temporal Sentinel-1 and Sentinel-2 data | ||
183 | with the SwissAlti3D terrain model. The models were calibrated using | 183 | with the SwissAlti3D terrain model. The models were calibrated using | ||
184 | digitized training polygons and independently validated data from the | 184 | digitized training polygons and independently validated data from the | ||
185 | National Forest Inventory (NFI). Whereas high model overall accuracies | 185 | National Forest Inventory (NFI). Whereas high model overall accuracies | ||
186 | (0.97) and kappa (0.96) were achieved, the comparison of the tree type | 186 | (0.97) and kappa (0.96) were achieved, the comparison of the tree type | ||
187 | map with independent NFI data revealed deviations in mixed | 187 | map with independent NFI data revealed deviations in mixed | ||
188 | stands.\n\nThe dataset 'Forest Type NFI 2018' is available on request | 188 | stands.\n\nThe dataset 'Forest Type NFI 2018' is available on request | ||
189 | (lars.waser@wsl.ch).\n\n", | 189 | (lars.waser@wsl.ch).\n\n", | ||
190 | "doi": "10.16904/1000001.6", | 190 | "doi": "10.16904/1000001.6", | ||
191 | "format": "geotiff", | 191 | "format": "geotiff", | ||
192 | "hash": "", | 192 | "hash": "", | ||
193 | "id": "5a18924a-ef5a-4af2-a391-b0056a0874bb", | 193 | "id": "5a18924a-ef5a-4af2-a391-b0056a0874bb", | ||
194 | "last_modified": "2025-03-07T08:14:12.880000", | 194 | "last_modified": "2025-03-07T08:14:12.880000", | ||
195 | "metadata_modified": "2025-03-07T07:14:13.227379", | 195 | "metadata_modified": "2025-03-07T07:14:13.227379", | ||
196 | "mimetype": null, | 196 | "mimetype": null, | ||
197 | "mimetype_inner": null, | 197 | "mimetype_inner": null, | ||
198 | "name": "Forest Type NFI 2018", | 198 | "name": "Forest Type NFI 2018", | ||
199 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 199 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
200 | "position": 0, | 200 | "position": 0, | ||
201 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 201 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
202 | "resource_type": null, | 202 | "resource_type": null, | ||
203 | "restricted": | 203 | "restricted": | ||
204 | \"same_organization\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 204 | \"same_organization\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
205 | "size": 191049626, | 205 | "size": 191049626, | ||
206 | "state": "active", | 206 | "state": "active", | ||
207 | "url": | 207 | "url": | ||
208 | 18924a-ef5a-4af2-a391-b0056a0874bb/download/forest-type-nfi-2018.tif", | 208 | 18924a-ef5a-4af2-a391-b0056a0874bb/download/forest-type-nfi-2018.tif", | ||
209 | "url_type": "upload" | 209 | "url_type": "upload" | ||
210 | }, | 210 | }, | ||
211 | { | 211 | { | ||
212 | "cache_last_updated": null, | 212 | "cache_last_updated": null, | ||
213 | "cache_url": null, | 213 | "cache_url": null, | ||
214 | "created": "2021-03-27T04:57:32.557727", | 214 | "created": "2021-03-27T04:57:32.557727", | ||
215 | "description": "This dataset presents a countrywide map with the | 215 | "description": "This dataset presents a countrywide map with the | ||
216 | two classes broadleaf and coniferous in Switzerland based on digital | 216 | two classes broadleaf and coniferous in Switzerland based on digital | ||
217 | aerial imagery. The spatial resolution of the data set is 3 m. The | 217 | aerial imagery. The spatial resolution of the data set is 3 m. The | ||
218 | pixel values correspond to the fraction (0-100 %) of the class | 218 | pixel values correspond to the fraction (0-100 %) of the class | ||
219 | broadleaf.\nThe classification approach incorporates a RF classifier, | 219 | broadleaf.\nThe classification approach incorporates a RF classifier, | ||
220 | predictors from multispectral aerial imagery (ADS80) and the | 220 | predictors from multispectral aerial imagery (ADS80) and the | ||
221 | SwissAlti3D terrain model. The model was tested, trained and validated | 221 | SwissAlti3D terrain model. The model was tested, trained and validated | ||
222 | using 90,000 digitized polygons and achieved an overall accuracy of | 222 | using 90,000 digitized polygons and achieved an overall accuracy of | ||
223 | 0.99 and a kappa of 0.98. Independent validation and plausibility | 223 | 0.99 and a kappa of 0.98. Independent validation and plausibility | ||
224 | check included the comparison of the predicted results with aerial | 224 | check included the comparison of the predicted results with aerial | ||
225 | image interpretations of the NFI. Significant deviations were | 225 | image interpretations of the NFI. Significant deviations were | ||
226 | observed, primarily due to an underestimation of broadleaved trees | 226 | observed, primarily due to an underestimation of broadleaved trees | ||
227 | (median underestimation of 3.17%), especially in mixed forest stands. | 227 | (median underestimation of 3.17%), especially in mixed forest stands. | ||
228 | For more details, see Waser et al. (2017).\n\nData 'Forest Type NFI | 228 | For more details, see Waser et al. (2017).\n\nData 'Forest Type NFI | ||
229 | 2016' available on request (lars.waser@wsl.ch).", | 229 | 2016' available on request (lars.waser@wsl.ch).", | ||
230 | "doi": "10.16904/1000001.3", | 230 | "doi": "10.16904/1000001.3", | ||
231 | "format": "geotiff", | 231 | "format": "geotiff", | ||
232 | "hash": "", | 232 | "hash": "", | ||
233 | "id": "0f22d071-5aac-4bfd-936d-89c0a56eed36", | 233 | "id": "0f22d071-5aac-4bfd-936d-89c0a56eed36", | ||
234 | "last_modified": "2025-03-06T14:38:42.823000", | 234 | "last_modified": "2025-03-06T14:38:42.823000", | ||
235 | "metadata_modified": "2025-03-06T13:38:43.468367", | 235 | "metadata_modified": "2025-03-06T13:38:43.468367", | ||
236 | "mimetype": null, | 236 | "mimetype": null, | ||
237 | "mimetype_inner": null, | 237 | "mimetype_inner": null, | ||
238 | "name": "Forest Type NFI 2016", | 238 | "name": "Forest Type NFI 2016", | ||
239 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 239 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
240 | "position": 1, | 240 | "position": 1, | ||
241 | "resource_size": "{\"size_value\":\"3\",\"size_units\":\"gb\"}", | 241 | "resource_size": "{\"size_value\":\"3\",\"size_units\":\"gb\"}", | ||
242 | "resource_type": null, | 242 | "resource_type": null, | ||
243 | "restricted": | 243 | "restricted": | ||
244 | \"same_organization\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 244 | \"same_organization\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
245 | "size": 69, | 245 | "size": 69, | ||
246 | "state": "active", | 246 | "state": "active", | ||
247 | "url": "", | 247 | "url": "", | ||
248 | "url_type": "" | 248 | "url_type": "" | ||
249 | }, | 249 | }, | ||
250 | { | 250 | { | ||
251 | "cache_last_updated": null, | 251 | "cache_last_updated": null, | ||
252 | "cache_url": null, | 252 | "cache_url": null, | ||
253 | "created": "2018-04-03T10:42:10.760550", | 253 | "created": "2018-04-03T10:42:10.760550", | ||
254 | "description": "Waser, L. T., Ginzler, C., & Rehush, N. (2017). | 254 | "description": "Waser, L. T., Ginzler, C., & Rehush, N. (2017). | ||
255 | Wall-to-Wall Tree Type Mapping from Countrywide Airborne Remote | 255 | Wall-to-Wall Tree Type Mapping from Countrywide Airborne Remote | ||
256 | Sensing Surveys. Remote Sensing, 9(8), 766. | 256 | Sensing Surveys. Remote Sensing, 9(8), 766. | ||
257 | https://doi.org/10.3390/rs9080766", | 257 | https://doi.org/10.3390/rs9080766", | ||
258 | "doi": "10.3390/rs9080766", | 258 | "doi": "10.3390/rs9080766", | ||
259 | "format": "PDF", | 259 | "format": "PDF", | ||
260 | "hash": "", | 260 | "hash": "", | ||
261 | "id": "98ae863c-1ba1-444f-b535-cd4f512c4227", | 261 | "id": "98ae863c-1ba1-444f-b535-cd4f512c4227", | ||
262 | "last_modified": "2025-03-04T23:05:32.264000", | 262 | "last_modified": "2025-03-04T23:05:32.264000", | ||
263 | "metadata_modified": "2025-03-04T22:05:32.666679", | 263 | "metadata_modified": "2025-03-04T22:05:32.666679", | ||
264 | "mimetype": null, | 264 | "mimetype": null, | ||
265 | "mimetype_inner": null, | 265 | "mimetype_inner": null, | ||
266 | "name": "Research Article", | 266 | "name": "Research Article", | ||
267 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 267 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
268 | "position": 2, | 268 | "position": 2, | ||
269 | "resource_size": | 269 | "resource_size": | ||
270 | "{\"size_value\":\"100\",\"size_units\":\"kb\"}", | 270 | "{\"size_value\":\"100\",\"size_units\":\"kb\"}", | ||
271 | "resource_type": null, | 271 | "resource_type": null, | ||
272 | "restricted": | 272 | "restricted": | ||
273 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 273 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
274 | "size": null, | 274 | "size": null, | ||
275 | "state": "active", | 275 | "state": "active", | ||
276 | "url": | 276 | "url": | ||
277 | "https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:14162", | 277 | "https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:14162", | ||
278 | "url_type": null | 278 | "url_type": null | ||
279 | }, | 279 | }, | ||
280 | { | 280 | { | ||
281 | "cache_last_updated": null, | 281 | "cache_last_updated": null, | ||
282 | "cache_url": null, | 282 | "cache_url": null, | ||
283 | "created": "2018-04-03T13:06:34.033220", | 283 | "created": "2018-04-03T13:06:34.033220", | ||
284 | "description": "Sample illustration of the Forest Type NFI | 284 | "description": "Sample illustration of the Forest Type NFI | ||
285 | dataset.", | 285 | dataset.", | ||
286 | "doi": "", | 286 | "doi": "", | ||
287 | "format": "JPEG", | 287 | "format": "JPEG", | ||
288 | "hash": "", | 288 | "hash": "", | ||
289 | "id": "7b6e4f37-c428-45dc-ba34-f40dd8368769", | 289 | "id": "7b6e4f37-c428-45dc-ba34-f40dd8368769", | ||
290 | "last_modified": "2025-03-09T22:30:09.166000", | 290 | "last_modified": "2025-03-09T22:30:09.166000", | ||
291 | "metadata_modified": "2025-03-09T21:30:09.529289", | 291 | "metadata_modified": "2025-03-09T21:30:09.529289", | ||
292 | "mimetype": "image/jpeg", | 292 | "mimetype": "image/jpeg", | ||
293 | "mimetype_inner": null, | 293 | "mimetype_inner": null, | ||
294 | "name": "Thumbnail", | 294 | "name": "Thumbnail", | ||
295 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 295 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
296 | "position": 3, | 296 | "position": 3, | ||
297 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 297 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
298 | "resource_type": null, | 298 | "resource_type": null, | ||
299 | "restricted": | 299 | "restricted": | ||
300 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 300 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
301 | "size": 3072776, | 301 | "size": 3072776, | ||
302 | "state": "active", | 302 | "state": "active", | ||
303 | "url": | 303 | "url": | ||
304 | e4f37-c428-45dc-ba34-f40dd8368769/download/forest_type_thumbnail.jpg", | 304 | e4f37-c428-45dc-ba34-f40dd8368769/download/forest_type_thumbnail.jpg", | ||
305 | "url_type": "upload" | 305 | "url_type": "upload" | ||
306 | }, | 306 | }, | ||
307 | { | 307 | { | ||
308 | "cache_last_updated": null, | 308 | "cache_last_updated": null, | ||
309 | "cache_url": null, | 309 | "cache_url": null, | ||
310 | "created": "2025-03-04T22:11:00.261394", | 310 | "created": "2025-03-04T22:11:00.261394", | ||
311 | "description": "Waser, L. T., R\u00fcetschi, M., Psomas, A., | 311 | "description": "Waser, L. T., R\u00fcetschi, M., Psomas, A., | ||
312 | Small, D., & Rehush, N. (2021). Mapping dominant leaf type based on | 312 | Small, D., & Rehush, N. (2021). Mapping dominant leaf type based on | ||
313 | combined Sentinel-1/-2 data \u2013 Challenges for mountainous | 313 | combined Sentinel-1/-2 data \u2013 Challenges for mountainous | ||
314 | countries. ISPRS Journal of Photogrammetry and Remote Sensing, 180, | 314 | countries. ISPRS Journal of Photogrammetry and Remote Sensing, 180, | ||
315 | 209-226. https://doi.org/10.1016/j.isprsjprs.2021.08.017", | 315 | 209-226. https://doi.org/10.1016/j.isprsjprs.2021.08.017", | ||
316 | "doi": "", | 316 | "doi": "", | ||
317 | "format": "PDF", | 317 | "format": "PDF", | ||
318 | "hash": "", | 318 | "hash": "", | ||
319 | "id": "659800b6-060e-40cb-9771-e46d71cba3e1", | 319 | "id": "659800b6-060e-40cb-9771-e46d71cba3e1", | ||
320 | "last_modified": "2025-03-04T23:13:18.542000", | 320 | "last_modified": "2025-03-04T23:13:18.542000", | ||
321 | "metadata_modified": "2025-03-04T22:13:18.960670", | 321 | "metadata_modified": "2025-03-04T22:13:18.960670", | ||
322 | "mimetype": null, | 322 | "mimetype": null, | ||
323 | "mimetype_inner": null, | 323 | "mimetype_inner": null, | ||
324 | "name": "Research Article", | 324 | "name": "Research Article", | ||
325 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 325 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
326 | "position": 4, | 326 | "position": 4, | ||
327 | "resource_size": | 327 | "resource_size": | ||
328 | "{\"size_value\":\"400\",\"size_units\":\"kb\"}", | 328 | "{\"size_value\":\"400\",\"size_units\":\"kb\"}", | ||
329 | "resource_type": null, | 329 | "resource_type": null, | ||
330 | "restricted": | 330 | "restricted": | ||
331 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 331 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
332 | "size": null, | 332 | "size": null, | ||
333 | "state": "active", | 333 | "state": "active", | ||
334 | "url": | 334 | "url": | ||
335 | "https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:28243", | 335 | "https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:28243", | ||
336 | "url_type": null | 336 | "url_type": null | ||
337 | }, | 337 | }, | ||
338 | { | 338 | { | ||
339 | "cache_last_updated": null, | 339 | "cache_last_updated": null, | ||
340 | "cache_url": null, | 340 | "cache_url": null, | ||
341 | "created": "2025-03-06T13:23:45.237260", | 341 | "created": "2025-03-06T13:23:45.237260", | ||
342 | "description": "\n**Important note:** This dataset is NOT | 342 | "description": "\n**Important note:** This dataset is NOT | ||
343 | suitable for analysis at the individual tree crown level because | 343 | suitable for analysis at the individual tree crown level because | ||
344 | pixel-level fractions (e.g., of the broadleaf class) are not allocated | 344 | pixel-level fractions (e.g., of the broadleaf class) are not allocated | ||
345 | to individual trees. Analysis is recommended only for areas larger | 345 | to individual trees. Analysis is recommended only for areas larger | ||
346 | than 3x3 pixels, i.e. by calculating the mean values, except in rare | 346 | than 3x3 pixels, i.e. by calculating the mean values, except in rare | ||
347 | cases of homogeneous forest stands (either broadleaf or coniferous | 347 | cases of homogeneous forest stands (either broadleaf or coniferous | ||
348 | class).\n\nThis dataset uses a remote sensing-based approach for a | 348 | class).\n\nThis dataset uses a remote sensing-based approach for a | ||
349 | countrywide mapping of the Dominant Leaf Type (DLT) in Switzerland, | 349 | countrywide mapping of the Dominant Leaf Type (DLT) in Switzerland, | ||
350 | classifying areas as either broadleaf or coniferous. These datasets | 350 | classifying areas as either broadleaf or coniferous. These datasets | ||
351 | have a spatial resolution of 10 m and provide the fractional | 351 | have a spatial resolution of 10 m and provide the fractional | ||
352 | representation (0-100%) of the class broadleaf at the pixel level | 352 | representation (0-100%) of the class broadleaf at the pixel level | ||
353 | (covering areas with vegetation height > 3m).\nThe classification | 353 | (covering areas with vegetation height > 3m).\nThe classification | ||
354 | approach is based on a Random Forest (RF) classifier, that combines | 354 | approach is based on a Random Forest (RF) classifier, that combines | ||
355 | predictors derived from multi-temporal Sentinel-1 and Sentinel-2 data | 355 | predictors derived from multi-temporal Sentinel-1 and Sentinel-2 data | ||
356 | with the SwissAlti3D terrain model. The models were calibrated using | 356 | with the SwissAlti3D terrain model. The models were calibrated using | ||
357 | digitized training polygons and independently validated data from the | 357 | digitized training polygons and independently validated data from the | ||
358 | National Forest Inventory (NFI). Whereas high model overall accuracies | 358 | National Forest Inventory (NFI). Whereas high model overall accuracies | ||
359 | (0.97) and kappa (0.96) were achieved, the comparison of the tree type | 359 | (0.97) and kappa (0.96) were achieved, the comparison of the tree type | ||
360 | map with independent NFI data revealed deviations in mixed | 360 | map with independent NFI data revealed deviations in mixed | ||
361 | stands.\n\nThe dataset 'Forest Type NFI 2018' is available on request | 361 | stands.\n\nThe dataset 'Forest Type NFI 2018' is available on request | ||
362 | (lars.waser@wsl.ch).", | 362 | (lars.waser@wsl.ch).", | ||
363 | "doi": "", | 363 | "doi": "", | ||
364 | "format": "geotif", | 364 | "format": "geotif", | ||
365 | "hash": "", | 365 | "hash": "", | ||
366 | "id": "884141d9-164a-4088-bc3a-5b4d4bb53d8f", | 366 | "id": "884141d9-164a-4088-bc3a-5b4d4bb53d8f", | ||
367 | "last_modified": "2025-03-07T08:15:14.960000", | 367 | "last_modified": "2025-03-07T08:15:14.960000", | ||
368 | "metadata_modified": "2025-03-07T07:15:15.294902", | 368 | "metadata_modified": "2025-03-07T07:15:15.294902", | ||
369 | "mimetype": "image/tiff", | 369 | "mimetype": "image/tiff", | ||
370 | "mimetype_inner": null, | 370 | "mimetype_inner": null, | ||
371 | "name": "Forest Type NFI 2023", | 371 | "name": "Forest Type NFI 2023", | ||
372 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 372 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
373 | "position": 5, | 373 | "position": 5, | ||
374 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 374 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
375 | "resource_type": null, | 375 | "resource_type": null, | ||
376 | "restricted": | 376 | "restricted": | ||
377 | \"same_organization\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 377 | \"same_organization\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
378 | "size": 3329049504, | 378 | "size": 3329049504, | ||
379 | "state": "active", | 379 | "state": "active", | ||
380 | "url": | 380 | "url": | ||
381 | -4088-bc3a-5b4d4bb53d8f/download/waldmischungsgrad_2023_10m_2056.tif", | 381 | -4088-bc3a-5b4d4bb53d8f/download/waldmischungsgrad_2023_10m_2056.tif", | ||
382 | "url_type": "upload" | 382 | "url_type": "upload" | ||
383 | }, | 383 | }, | ||
384 | { | 384 | { | ||
385 | "cache_last_updated": null, | 385 | "cache_last_updated": null, | ||
386 | "cache_url": null, | 386 | "cache_url": null, | ||
387 | "created": "2025-03-09T21:36:32.049910", | 387 | "created": "2025-03-09T21:36:32.049910", | ||
388 | "description": "Preview of the dataset Forest Type NFI 2023.", | 388 | "description": "Preview of the dataset Forest Type NFI 2023.", | ||
389 | "doi": "", | 389 | "doi": "", | ||
390 | "format": "JPEG", | 390 | "format": "JPEG", | ||
391 | "hash": "", | 391 | "hash": "", | ||
392 | "id": "d0eefe2f-2ce9-4c48-91aa-c99fe0bb2a67", | 392 | "id": "d0eefe2f-2ce9-4c48-91aa-c99fe0bb2a67", | ||
393 | "last_modified": "2025-03-09T22:37:56.389000", | 393 | "last_modified": "2025-03-09T22:37:56.389000", | ||
394 | "metadata_modified": "2025-03-09T21:37:56.740956", | 394 | "metadata_modified": "2025-03-09T21:37:56.740956", | ||
395 | "mimetype": "image/jpeg", | 395 | "mimetype": "image/jpeg", | ||
396 | "mimetype_inner": null, | 396 | "mimetype_inner": null, | ||
397 | "name": "Dataset preview ", | 397 | "name": "Dataset preview ", | ||
398 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | 398 | "package_id": "82d763fa-123a-4648-b827-0dec02a5efbc", | ||
399 | "position": 6, | 399 | "position": 6, | ||
400 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 400 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
401 | "resource_type": null, | 401 | "resource_type": null, | ||
402 | "restricted": | 402 | "restricted": | ||
403 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 403 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
404 | "size": 138211, | 404 | "size": 138211, | ||
405 | "state": "active", | 405 | "state": "active", | ||
406 | "url": | 406 | "url": | ||
407 | ce/d0eefe2f-2ce9-4c48-91aa-c99fe0bb2a67/download/foresttype-2023.jpg", | 407 | ce/d0eefe2f-2ce9-4c48-91aa-c99fe0bb2a67/download/foresttype-2023.jpg", | ||
408 | "url_type": "upload" | 408 | "url_type": "upload" | ||
409 | } | 409 | } | ||
410 | ], | 410 | ], | ||
411 | "spatial": | 411 | "spatial": | ||
412 | inates\":[[[-175,-85],[-175,85],[175,85],[175,-85],[-175,-85]]]}]}]}", | 412 | inates\":[[[-175,-85],[-175,85],[175,85],[175,-85],[-175,-85]]]}]}]}", | ||
413 | "spatial_info": "Switzerland", | 413 | "spatial_info": "Switzerland", | ||
414 | "state": "active", | 414 | "state": "active", | ||
415 | "subtitle": "", | 415 | "subtitle": "", | ||
416 | "tags": [ | 416 | "tags": [ | ||
417 | { | 417 | { | ||
t | t | 418 | "display_name": "BROADLEAF PROBABILITY", | ||
419 | "id": "b2c1c2b5-27cf-4439-870b-bf797970a6a6", | ||||
420 | "name": "BROADLEAF PROBABILITY", | ||||
421 | "state": "active", | ||||
422 | "vocabulary_id": null | ||||
423 | }, | ||||
424 | { | ||||
418 | "display_name": "DOMINANT LEAFTYPE", | 425 | "display_name": "DOMINANT LEAFTYPE", | ||
419 | "id": "1b334234-4bd0-44d4-bb78-039fe70bab90", | 426 | "id": "1b334234-4bd0-44d4-bb78-039fe70bab90", | ||
420 | "name": "DOMINANT LEAFTYPE", | 427 | "name": "DOMINANT LEAFTYPE", | ||
421 | "state": "active", | 428 | "state": "active", | ||
422 | "vocabulary_id": null | 429 | "vocabulary_id": null | ||
423 | }, | 430 | }, | ||
424 | { | 431 | { | ||
425 | "display_name": "FOREST", | 432 | "display_name": "FOREST", | ||
426 | "id": "90cd0d8f-8df0-4b78-ac11-6e38c2a22106", | 433 | "id": "90cd0d8f-8df0-4b78-ac11-6e38c2a22106", | ||
427 | "name": "FOREST", | 434 | "name": "FOREST", | ||
428 | "state": "active", | 435 | "state": "active", | ||
429 | "vocabulary_id": null | 436 | "vocabulary_id": null | ||
430 | }, | 437 | }, | ||
431 | { | 438 | { | ||
432 | "display_name": "FOREST INVENTORY", | 439 | "display_name": "FOREST INVENTORY", | ||
433 | "id": "d1b2883f-be82-426b-8a5e-fd6d36bc2855", | 440 | "id": "d1b2883f-be82-426b-8a5e-fd6d36bc2855", | ||
434 | "name": "FOREST INVENTORY", | 441 | "name": "FOREST INVENTORY", | ||
435 | "state": "active", | 442 | "state": "active", | ||
436 | "vocabulary_id": null | 443 | "vocabulary_id": null | ||
437 | }, | 444 | }, | ||
438 | { | 445 | { | ||
439 | "display_name": "FOREST TYPE", | 446 | "display_name": "FOREST TYPE", | ||
440 | "id": "52ad8bb3-8ec8-4e9d-8798-858d7662c3e4", | 447 | "id": "52ad8bb3-8ec8-4e9d-8798-858d7662c3e4", | ||
441 | "name": "FOREST TYPE", | 448 | "name": "FOREST TYPE", | ||
442 | "state": "active", | 449 | "state": "active", | ||
443 | "vocabulary_id": null | 450 | "vocabulary_id": null | ||
444 | }, | 451 | }, | ||
445 | { | 452 | { | ||
446 | "display_name": "NFI", | 453 | "display_name": "NFI", | ||
447 | "id": "0a74eb64-cf7b-42df-b2d4-1a5ad8171458", | 454 | "id": "0a74eb64-cf7b-42df-b2d4-1a5ad8171458", | ||
448 | "name": "NFI", | 455 | "name": "NFI", | ||
449 | "state": "active", | 456 | "state": "active", | ||
450 | "vocabulary_id": null | 457 | "vocabulary_id": null | ||
451 | }, | 458 | }, | ||
452 | { | 459 | { | ||
453 | "display_name": "REMOTE SENSING", | 460 | "display_name": "REMOTE SENSING", | ||
454 | "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", | 461 | "id": "1bc9d51e-2500-44a7-857b-13710a59e4be", | ||
455 | "name": "REMOTE SENSING", | 462 | "name": "REMOTE SENSING", | ||
456 | "state": "active", | 463 | "state": "active", | ||
457 | "vocabulary_id": null | 464 | "vocabulary_id": null | ||
458 | } | 465 | } | ||
459 | ], | 466 | ], | ||
460 | "title": "Forest Type NFI", | 467 | "title": "Forest Type NFI", | ||
461 | "type": "dataset", | 468 | "type": "dataset", | ||
462 | "url": null, | 469 | "url": null, | ||
463 | "version": "2023" | 470 | "version": "2023" | ||
464 | } | 471 | } |