Changes
On February 22, 2022 at 3:15:37 PM UTC, Administrator:
-
Changed value of field
publication_state
topublished
in A numerical solver for heat and mass transport in snow based on FEniCS
f | 1 | { | f | 1 | { |
2 | "author": "[{\"affiliation\": \"WSL Institute for Snow and Avalanche | 2 | "author": "[{\"affiliation\": \"WSL Institute for Snow and Avalanche | ||
3 | Research SLF, Davos Dorf, Switzerland\", \"affiliation_02\": | 3 | Research SLF, Davos Dorf, Switzerland\", \"affiliation_02\": | ||
4 | \"University of St. Gallen\", \"affiliation_03\": \"\", | 4 | \"University of St. Gallen\", \"affiliation_03\": \"\", | ||
5 | \"data_credit\": [\"collection\", \"validation\", \"curation\", | 5 | \"data_credit\": [\"collection\", \"validation\", \"curation\", | ||
6 | \"software\"], \"email\": \"konstantin.schuerholt@unisg.ch\", | 6 | \"software\"], \"email\": \"konstantin.schuerholt@unisg.ch\", | ||
7 | \"given_name\": \"Konstantin\", \"identifier\": \"\", \"name\": | 7 | \"given_name\": \"Konstantin\", \"identifier\": \"\", \"name\": | ||
8 | \"Sch\\u00fcrholt\"}, {\"affiliation\": \"RWTH Aachen University\", | 8 | \"Sch\\u00fcrholt\"}, {\"affiliation\": \"RWTH Aachen University\", | ||
9 | \"affiliation_02\": \"\", \"affiliation_03\": \"\", \"data_credit\": | 9 | \"affiliation_02\": \"\", \"affiliation_03\": \"\", \"data_credit\": | ||
10 | \"supervision\", \"email\": \"kowalski@aices.rwth-aachen.de\", | 10 | \"supervision\", \"email\": \"kowalski@aices.rwth-aachen.de\", | ||
11 | \"given_name\": \"Julia\", \"identifier\": \"\", \"name\": | 11 | \"given_name\": \"Julia\", \"identifier\": \"\", \"name\": | ||
12 | \"Kowalski\"}, {\"affiliation\": \"WSL Institute for Snow and | 12 | \"Kowalski\"}, {\"affiliation\": \"WSL Institute for Snow and | ||
13 | Avalanche Research SLF, Davos Dorf, Switzerland\", \"affiliation_02\": | 13 | Avalanche Research SLF, Davos Dorf, Switzerland\", \"affiliation_02\": | ||
14 | \"SLF\", \"affiliation_03\": \"\", \"data_credit\": [\"software\", | 14 | \"SLF\", \"affiliation_03\": \"\", \"data_credit\": [\"software\", | ||
15 | \"publication\", \"supervision\"], \"email\": \"loewe@slf.ch\", | 15 | \"publication\", \"supervision\"], \"email\": \"loewe@slf.ch\", | ||
16 | \"given_name\": \"Henning\", \"identifier\": \"0000-0001-7515-6809\", | 16 | \"given_name\": \"Henning\", \"identifier\": \"0000-0001-7515-6809\", | ||
17 | \"name\": \"L\\u00f6we\"}]", | 17 | \"name\": \"L\\u00f6we\"}]", | ||
18 | "author_email": null, | 18 | "author_email": null, | ||
19 | "creator_user_id": "499ed6fc-58b8-451d-aaf2-807118a6d1f8", | 19 | "creator_user_id": "499ed6fc-58b8-451d-aaf2-807118a6d1f8", | ||
20 | "date": "[{\"date\": \"2022-02-22\", \"date_type\": \"created\", | 20 | "date": "[{\"date\": \"2022-02-22\", \"date_type\": \"created\", | ||
21 | \"end_date\": \"2022-02-22\"}]", | 21 | \"end_date\": \"2022-02-22\"}]", | ||
22 | "doi": "10.16904/envidat.298", | 22 | "doi": "10.16904/envidat.298", | ||
23 | "funding": "[{\"grant_number\": \"\", \"institution\": \"WSL\", | 23 | "funding": "[{\"grant_number\": \"\", \"institution\": \"WSL\", | ||
24 | \"institution_url\": \"\"}]", | 24 | \"institution_url\": \"\"}]", | ||
25 | "groups": [], | 25 | "groups": [], | ||
26 | "id": "d31c1081-09f7-46db-a589-f73bb32dd539", | 26 | "id": "d31c1081-09f7-46db-a589-f73bb32dd539", | ||
27 | "isopen": true, | 27 | "isopen": true, | ||
28 | "language": "en", | 28 | "language": "en", | ||
29 | "license_id": "cc-by-sa", | 29 | "license_id": "cc-by-sa", | ||
30 | "license_title": "Creative Commons Attribution Share-Alike | 30 | "license_title": "Creative Commons Attribution Share-Alike | ||
31 | (CC-BY-SA)", | 31 | (CC-BY-SA)", | ||
32 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | 32 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | ||
33 | "maintainer": "{\"affiliation\": \"WSL Institute for Snow and | 33 | "maintainer": "{\"affiliation\": \"WSL Institute for Snow and | ||
34 | Avalanche Research SLF, Davos Dorf, Switzerland\", \"email\": | 34 | Avalanche Research SLF, Davos Dorf, Switzerland\", \"email\": | ||
35 | \"loewe@slf.ch\", \"given_name\": \"Henning\", \"identifier\": | 35 | \"loewe@slf.ch\", \"given_name\": \"Henning\", \"identifier\": | ||
36 | \"0000-0001-7515-6809\", \"name\": \"L\u00f6we\"}", | 36 | \"0000-0001-7515-6809\", \"name\": \"L\u00f6we\"}", | ||
37 | "maintainer_email": null, | 37 | "maintainer_email": null, | ||
38 | "metadata_created": "2022-02-22T11:36:03.812002", | 38 | "metadata_created": "2022-02-22T11:36:03.812002", | ||
n | 39 | "metadata_modified": "2022-02-22T12:22:35.775761", | n | 39 | "metadata_modified": "2022-02-22T15:15:37.819188", |
40 | "name": | 40 | "name": | ||
41 | numerical-solver-for-heat-and-mass-transport-in-snow-based-on-fenics", | 41 | numerical-solver-for-heat-and-mass-transport-in-snow-based-on-fenics", | ||
42 | "notes": "This python code uses the Finite Element library FEniCS | 42 | "notes": "This python code uses the Finite Element library FEniCS | ||
43 | (via docker) to solve the one dimensional partial differential | 43 | (via docker) to solve the one dimensional partial differential | ||
44 | equations for heat and mass transfer in snow. The results are written | 44 | equations for heat and mass transfer in snow. The results are written | ||
45 | in vtk format. \r\n\r\nThe dataset contains the code and the output | 45 | in vtk format. \r\n\r\nThe dataset contains the code and the output | ||
46 | data to reproduce the key Figure 5 from the related | 46 | data to reproduce the key Figure 5 from the related | ||
47 | publication:\r\n\r\n_Sch\u00fcrholt, K., Kowalski, J., L\u00f6we, H.; | 47 | publication:\r\n\r\n_Sch\u00fcrholt, K., Kowalski, J., L\u00f6we, H.; | ||
48 | Elements of future snowpack modeling - Part 1: A | 48 | Elements of future snowpack modeling - Part 1: A | ||
49 | physical\r\ninstability arising from the non-linear coupling of | 49 | physical\r\ninstability arising from the non-linear coupling of | ||
50 | transport and phase changes, The Cryosphere, 2022_\r\n\r\nThe code and | 50 | transport and phase changes, The Cryosphere, 2022_\r\n\r\nThe code and | ||
51 | potential updates can be accessed directly through git | 51 | potential updates can be accessed directly through git | ||
52 | via:\r\n\r\nhttps://gitlabext.wsl.ch/snow-physics/snowmodel_fenics", | 52 | via:\r\n\r\nhttps://gitlabext.wsl.ch/snow-physics/snowmodel_fenics", | ||
53 | "num_resources": 1, | 53 | "num_resources": 1, | ||
54 | "num_tags": 5, | 54 | "num_tags": 5, | ||
55 | "organization": { | 55 | "organization": { | ||
56 | "approval_status": "approved", | 56 | "approval_status": "approved", | ||
57 | "created": "2018-11-15T15:27:32.106204", | 57 | "created": "2018-11-15T15:27:32.106204", | ||
58 | "description": "The core topic of the team \"Snow Physics\" is | 58 | "description": "The core topic of the team \"Snow Physics\" is | ||
59 | structure and property of snow and firn at different scales. Our most | 59 | structure and property of snow and firn at different scales. Our most | ||
60 | important tools in the cold laboratory are micro-computed tomography | 60 | important tools in the cold laboratory are micro-computed tomography | ||
61 | (micro-CT), nature-identical snow production, and our in-house | 61 | (micro-CT), nature-identical snow production, and our in-house | ||
62 | designed snow-breeders.\r\n\r\nBased on the three-dimensional | 62 | designed snow-breeders.\r\n\r\nBased on the three-dimensional | ||
63 | representation of snow, we can now calculate fundamental structural | 63 | representation of snow, we can now calculate fundamental structural | ||
64 | parameters as density variations at a spatial resolution of a few | 64 | parameters as density variations at a spatial resolution of a few | ||
65 | millimeters, e.g. revealing the finely layered structure of weak | 65 | millimeters, e.g. revealing the finely layered structure of weak | ||
66 | layers or of polar firn. In addition, the readily available data are | 66 | layers or of polar firn. In addition, the readily available data are | ||
67 | used to calculate the correlation function in all 3D, which enables a | 67 | used to calculate the correlation function in all 3D, which enables a | ||
68 | deeper understanding of the interactions between structure and | 68 | deeper understanding of the interactions between structure and | ||
69 | functional properties, e.g. for microwaves.\r\n\r\nIn addition, we are | 69 | functional properties, e.g. for microwaves.\r\n\r\nIn addition, we are | ||
70 | able to use the exact microstructure of snow for numerical | 70 | able to use the exact microstructure of snow for numerical | ||
71 | simulations. Our own or adapted codes allow to calculate thermal | 71 | simulations. Our own or adapted codes allow to calculate thermal | ||
72 | conductivity, mechanical properties, and optical properties. Direct | 72 | conductivity, mechanical properties, and optical properties. Direct | ||
73 | numerical simulation proves to be a highly valuable tool to understand | 73 | numerical simulation proves to be a highly valuable tool to understand | ||
74 | the complexity of snow.\r\n\r\nOur micro-CT is equipped with the | 74 | the complexity of snow.\r\n\r\nOur micro-CT is equipped with the | ||
75 | ability to perform time-lapse tomography using so called | 75 | ability to perform time-lapse tomography using so called | ||
76 | snow-breeders. The snow breeder made the first in-situ time-lapse | 76 | snow-breeders. The snow breeder made the first in-situ time-lapse | ||
77 | movie of metamorphosing snow under a temperature gradient | 77 | movie of metamorphosing snow under a temperature gradient | ||
78 | possible.\r\n\r\nOur developments don't stop at the microstructure. | 78 | possible.\r\n\r\nOur developments don't stop at the microstructure. | ||
79 | The quantification of snow properties at the larger scale of a snow | 79 | The quantification of snow properties at the larger scale of a snow | ||
80 | profile or on a field requires new techniques to link the micro- to | 80 | profile or on a field requires new techniques to link the micro- to | ||
81 | the macro-scale. For this purpose we developed the SnowMicroPen, a | 81 | the macro-scale. For this purpose we developed the SnowMicroPen, a | ||
82 | high-resolution penetrometer, which is able to discern different snow | 82 | high-resolution penetrometer, which is able to discern different snow | ||
83 | types using signal processing. Near-infrared photography has become a | 83 | types using signal processing. Near-infrared photography has become a | ||
84 | standard tool to quantify spatial variation of the specific surface | 84 | standard tool to quantify spatial variation of the specific surface | ||
85 | area, and, concurrently, the equivalent optical grain size. Currently, | 85 | area, and, concurrently, the equivalent optical grain size. Currently, | ||
86 | we are developing new optical techniques which try to measure density | 86 | we are developing new optical techniques which try to measure density | ||
87 | and specific surface area at the same time.", | 87 | and specific surface area at the same time.", | ||
88 | "id": "9814941c-2527-4c02-bebf-693a0cd761bd", | 88 | "id": "9814941c-2527-4c02-bebf-693a0cd761bd", | ||
89 | "image_url": | 89 | "image_url": | ||
90 | s://www.envidat.ch/uploads/group/2016-05-24-141521.837240logoslf.png", | 90 | s://www.envidat.ch/uploads/group/2016-05-24-141521.837240logoslf.png", | ||
91 | "is_organization": true, | 91 | "is_organization": true, | ||
92 | "name": "snow-physics", | 92 | "name": "snow-physics", | ||
93 | "state": "active", | 93 | "state": "active", | ||
94 | "title": "Snow Physics", | 94 | "title": "Snow Physics", | ||
95 | "type": "organization" | 95 | "type": "organization" | ||
96 | }, | 96 | }, | ||
97 | "owner_org": "9814941c-2527-4c02-bebf-693a0cd761bd", | 97 | "owner_org": "9814941c-2527-4c02-bebf-693a0cd761bd", | ||
98 | "private": false, | 98 | "private": false, | ||
99 | "publication": "{\"publication_year\": \"2022\", \"publisher\": | 99 | "publication": "{\"publication_year\": \"2022\", \"publisher\": | ||
100 | \"EnviDat\"}", | 100 | \"EnviDat\"}", | ||
t | 101 | "publication_state": "approved", | t | 101 | "publication_state": "published", |
102 | "related_datasets": "", | 102 | "related_datasets": "", | ||
103 | "related_publications": "Sch\u00fcrholt, K., Kowalski, J., | 103 | "related_publications": "Sch\u00fcrholt, K., Kowalski, J., | ||
104 | L\u00f6we, H.; Elements of future snowpack modeling - Part 1: A | 104 | L\u00f6we, H.; Elements of future snowpack modeling - Part 1: A | ||
105 | physical\r\ninstability arising from the non-linear coupling of | 105 | physical\r\ninstability arising from the non-linear coupling of | ||
106 | transport and phase changes, The Cryosphere, 2022", | 106 | transport and phase changes, The Cryosphere, 2022", | ||
107 | "relationships_as_object": [], | 107 | "relationships_as_object": [], | ||
108 | "relationships_as_subject": [], | 108 | "relationships_as_subject": [], | ||
109 | "resource_type": "software", | 109 | "resource_type": "software", | ||
110 | "resource_type_general": "software", | 110 | "resource_type_general": "software", | ||
111 | "resources": [ | 111 | "resources": [ | ||
112 | { | 112 | { | ||
113 | "cache_last_updated": null, | 113 | "cache_last_updated": null, | ||
114 | "cache_url": null, | 114 | "cache_url": null, | ||
115 | "created": "2022-02-22T11:43:51.622111", | 115 | "created": "2022-02-22T11:43:51.622111", | ||
116 | "description": "Data and code v1.0 downloaded from the | 116 | "description": "Data and code v1.0 downloaded from the | ||
117 | git.\r\n\r\nRunning the code requires an installation of FEniCS via | 117 | git.\r\n\r\nRunning the code requires an installation of FEniCS via | ||
118 | docker.", | 118 | docker.", | ||
119 | "doi": "", | 119 | "doi": "", | ||
120 | "format": "ZIP", | 120 | "format": "ZIP", | ||
121 | "hash": "", | 121 | "hash": "", | ||
122 | "id": "45b205e9-7643-4e89-a672-9e9e3c6a8ca8", | 122 | "id": "45b205e9-7643-4e89-a672-9e9e3c6a8ca8", | ||
123 | "last_modified": "2022-02-22T13:02:31.012819", | 123 | "last_modified": "2022-02-22T13:02:31.012819", | ||
124 | "metadata_modified": "2022-02-22T12:02:31.393756", | 124 | "metadata_modified": "2022-02-22T12:02:31.393756", | ||
125 | "mimetype": null, | 125 | "mimetype": null, | ||
126 | "mimetype_inner": null, | 126 | "mimetype_inner": null, | ||
127 | "name": "", | 127 | "name": "", | ||
128 | "package_id": "d31c1081-09f7-46db-a589-f73bb32dd539", | 128 | "package_id": "d31c1081-09f7-46db-a589-f73bb32dd539", | ||
129 | "position": 0, | 129 | "position": 0, | ||
130 | "publication_state": "", | 130 | "publication_state": "", | ||
131 | "resource_size": "{\"size_value\": \"\", \"size_units\": | 131 | "resource_size": "{\"size_value\": \"\", \"size_units\": | ||
132 | \"kb\"}", | 132 | \"kb\"}", | ||
133 | "resource_type": null, | 133 | "resource_type": null, | ||
134 | "restricted": "{\"level\": \"public\", \"allowed_users\": \"\", | 134 | "restricted": "{\"level\": \"public\", \"allowed_users\": \"\", | ||
135 | \"shared_secret\": \"\"}", | 135 | \"shared_secret\": \"\"}", | ||
136 | "size": 2470919, | 136 | "size": 2470919, | ||
137 | "state": "active", | 137 | "state": "active", | ||
138 | "url": | 138 | "url": | ||
139 | 205e9-7643-4e89-a672-9e9e3c6a8ca8/download/snowmodel_fenics-main.zip", | 139 | 205e9-7643-4e89-a672-9e9e3c6a8ca8/download/snowmodel_fenics-main.zip", | ||
140 | "url_type": "upload" | 140 | "url_type": "upload" | ||
141 | } | 141 | } | ||
142 | ], | 142 | ], | ||
143 | "spatial": | 143 | "spatial": | ||
144 | \":\"Point\",\"coordinates\":[9.847249388913042,46.812044026610586]}", | 144 | \":\"Point\",\"coordinates\":[9.847249388913042,46.812044026610586]}", | ||
145 | "spatial_info": "Switzerland", | 145 | "spatial_info": "Switzerland", | ||
146 | "state": "active", | 146 | "state": "active", | ||
147 | "subtitle": "", | 147 | "subtitle": "", | ||
148 | "tags": [ | 148 | "tags": [ | ||
149 | { | 149 | { | ||
150 | "display_name": "NUMERICAL MODEL", | 150 | "display_name": "NUMERICAL MODEL", | ||
151 | "id": "2a2f1c7b-7988-463a-a636-e271f4e978ea", | 151 | "id": "2a2f1c7b-7988-463a-a636-e271f4e978ea", | ||
152 | "name": "NUMERICAL MODEL", | 152 | "name": "NUMERICAL MODEL", | ||
153 | "state": "active", | 153 | "state": "active", | ||
154 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
155 | }, | 155 | }, | ||
156 | { | 156 | { | ||
157 | "display_name": "PATTERN FORMATION", | 157 | "display_name": "PATTERN FORMATION", | ||
158 | "id": "cd553000-48ed-4a0b-b41a-a3a53f9b24c0", | 158 | "id": "cd553000-48ed-4a0b-b41a-a3a53f9b24c0", | ||
159 | "name": "PATTERN FORMATION", | 159 | "name": "PATTERN FORMATION", | ||
160 | "state": "active", | 160 | "state": "active", | ||
161 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
162 | }, | 162 | }, | ||
163 | { | 163 | { | ||
164 | "display_name": "PYTHON", | 164 | "display_name": "PYTHON", | ||
165 | "id": "8be68dd8-8dcf-4f2c-857e-3af299d80605", | 165 | "id": "8be68dd8-8dcf-4f2c-857e-3af299d80605", | ||
166 | "name": "PYTHON", | 166 | "name": "PYTHON", | ||
167 | "state": "active", | 167 | "state": "active", | ||
168 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
169 | }, | 169 | }, | ||
170 | { | 170 | { | ||
171 | "display_name": "SNOW", | 171 | "display_name": "SNOW", | ||
172 | "id": "c4e9ea3f-6149-45ce-8631-c872b96a9537", | 172 | "id": "c4e9ea3f-6149-45ce-8631-c872b96a9537", | ||
173 | "name": "SNOW", | 173 | "name": "SNOW", | ||
174 | "state": "active", | 174 | "state": "active", | ||
175 | "vocabulary_id": null | 175 | "vocabulary_id": null | ||
176 | }, | 176 | }, | ||
177 | { | 177 | { | ||
178 | "display_name": "VAPOR TRANSPORT", | 178 | "display_name": "VAPOR TRANSPORT", | ||
179 | "id": "827ba2a2-5485-4a3a-916d-fd944e6ec873", | 179 | "id": "827ba2a2-5485-4a3a-916d-fd944e6ec873", | ||
180 | "name": "VAPOR TRANSPORT", | 180 | "name": "VAPOR TRANSPORT", | ||
181 | "state": "active", | 181 | "state": "active", | ||
182 | "vocabulary_id": null | 182 | "vocabulary_id": null | ||
183 | } | 183 | } | ||
184 | ], | 184 | ], | ||
185 | "title": "A numerical solver for heat and mass transport in snow | 185 | "title": "A numerical solver for heat and mass transport in snow | ||
186 | based on FEniCS", | 186 | based on FEniCS", | ||
187 | "type": "dataset", | 187 | "type": "dataset", | ||
188 | "url": null, | 188 | "url": null, | ||
189 | "version": "1.0" | 189 | "version": "1.0" | ||
190 | } | 190 | } |