Changes
On February 13, 2023 at 10:45:53 AM UTC, Yohann Chauvier:
-
Set author of Novel methods to correct for observer and sampling bias in presence-only species distribution models to [{"given_name": "Yohann", "name": "Chauvier", "email": "yohann.chauvier@wsl.ch", "data_credit": ["software", "curation", "collection", "validation", "publication"], "identifier": "https://orcid.org/0000-0001-9399-3192", "affiliation": "WSL"}, {"given_name": "Niklaus", "name": "Zimmermann", "email": "niklaus.zimmermann@wsl.ch", "data_credit": ["supervision", "validation"], "identifier": "https://orcid.org/0000-0003-3099-9604", "affiliation": "WSL"}, {"given_name": "Giovanni", "name": "Poggiato", "email": "giov.poggiato@gmail.com", "data_credit": [], "identifier": "", "affiliation": "LECA"}, {"given_name": "Daria", "name": "Bystrova", "email": "daria.bystrova@inria.fr", "data_credit": [], "identifier": "", "affiliation": "LECA"}, {"given_name": "Philipp", "name": "Brun", "email": "philipp.brun@wsl.ch", "data_credit": [], "identifier": "https://orcid.org/0000-0002-2750-9793", "affiliation": "WSL"}, {"given_name": "Wilfried", "name": "Thuiller", "email": "wilfried.thuiller@univ-grenoble-alpes.fr", "data_credit": [], "identifier": "https://orcid.org/0000-0002-5388-5274", "affiliation": "LECA"}] (previously [{"given_name": "Yohann", "name": "Chauvier", "email": "yohann.chauvier@wsl.ch", "data_credit": ["software", "curation", "collection", "validation", "publication"], "identifier": "https://orcid.org/0000-0001-9399-3192", "affiliation": "WSL"}, {"given_name": "Niklaus", "name": "Zimmermann", "email": "niklaus.zimmermann@wsl.ch", "data_credit": ["supervision"], "identifier": "https://orcid.org/0000-0003-3099-9604", "affiliation": "WSL"}, {"given_name": "Giovanni", "name": "Poggiato", "email": "giov.poggiato@gmail.com", "data_credit": [], "identifier": "", "affiliation": "LECA"}, {"given_name": "Daria", "name": "Bystrova", "email": "daria.bystrova@inria.fr", "data_credit": [], "identifier": "", "affiliation": "LECA"}, {"given_name": "Philipp", "name": "Brun", "email": "philipp.brun@wsl.ch", "data_credit": [], "identifier": "https://orcid.org/0000-0002-2750-9793", "affiliation": "WSL"}, {"given_name": "Wilfried", "name": "Thuiller", "email": "wilfried.thuiller@univ-grenoble-alpes.fr", "data_credit": [], "identifier": "https://orcid.org/0000-0002-5388-5274", "affiliation": "LECA"}])
f | 1 | { | f | 1 | { |
2 | "author": "[{\"given_name\": \"Yohann\", \"name\": \"Chauvier\", | 2 | "author": "[{\"given_name\": \"Yohann\", \"name\": \"Chauvier\", | ||
3 | \"email\": \"yohann.chauvier@wsl.ch\", \"data_credit\": [\"software\", | 3 | \"email\": \"yohann.chauvier@wsl.ch\", \"data_credit\": [\"software\", | ||
4 | \"curation\", \"collection\", \"validation\", \"publication\"], | 4 | \"curation\", \"collection\", \"validation\", \"publication\"], | ||
5 | \"identifier\": \"https://orcid.org/0000-0001-9399-3192\", | 5 | \"identifier\": \"https://orcid.org/0000-0001-9399-3192\", | ||
6 | \"affiliation\": \"WSL\"}, {\"given_name\": \"Niklaus\", \"name\": | 6 | \"affiliation\": \"WSL\"}, {\"given_name\": \"Niklaus\", \"name\": | ||
7 | \"Zimmermann\", \"email\": \"niklaus.zimmermann@wsl.ch\", | 7 | \"Zimmermann\", \"email\": \"niklaus.zimmermann@wsl.ch\", | ||
n | 8 | \"data_credit\": [\"supervision\"], \"identifier\": | n | 8 | \"data_credit\": [\"supervision\", \"validation\"], \"identifier\": |
9 | \"https://orcid.org/0000-0003-3099-9604\", \"affiliation\": \"WSL\"}, | 9 | \"https://orcid.org/0000-0003-3099-9604\", \"affiliation\": \"WSL\"}, | ||
10 | {\"given_name\": \"Giovanni\", \"name\": \"Poggiato\", \"email\": | 10 | {\"given_name\": \"Giovanni\", \"name\": \"Poggiato\", \"email\": | ||
11 | \"giov.poggiato@gmail.com\", \"data_credit\": [], \"identifier\": | 11 | \"giov.poggiato@gmail.com\", \"data_credit\": [], \"identifier\": | ||
12 | \"\", \"affiliation\": \"LECA\"}, {\"given_name\": \"Daria\", | 12 | \"\", \"affiliation\": \"LECA\"}, {\"given_name\": \"Daria\", | ||
13 | \"name\": \"Bystrova\", \"email\": \"daria.bystrova@inria.fr\", | 13 | \"name\": \"Bystrova\", \"email\": \"daria.bystrova@inria.fr\", | ||
14 | \"data_credit\": [], \"identifier\": \"\", \"affiliation\": \"LECA\"}, | 14 | \"data_credit\": [], \"identifier\": \"\", \"affiliation\": \"LECA\"}, | ||
15 | {\"given_name\": \"Philipp\", \"name\": \"Brun\", \"email\": | 15 | {\"given_name\": \"Philipp\", \"name\": \"Brun\", \"email\": | ||
16 | \"philipp.brun@wsl.ch\", \"data_credit\": [], \"identifier\": | 16 | \"philipp.brun@wsl.ch\", \"data_credit\": [], \"identifier\": | ||
17 | \"https://orcid.org/0000-0002-2750-9793\", \"affiliation\": \"WSL\"}, | 17 | \"https://orcid.org/0000-0002-2750-9793\", \"affiliation\": \"WSL\"}, | ||
18 | {\"given_name\": \"Wilfried\", \"name\": \"Thuiller\", \"email\": | 18 | {\"given_name\": \"Wilfried\", \"name\": \"Thuiller\", \"email\": | ||
19 | \"wilfried.thuiller@univ-grenoble-alpes.fr\", \"data_credit\": [], | 19 | \"wilfried.thuiller@univ-grenoble-alpes.fr\", \"data_credit\": [], | ||
20 | \"identifier\": \"https://orcid.org/0000-0002-5388-5274\", | 20 | \"identifier\": \"https://orcid.org/0000-0002-5388-5274\", | ||
21 | \"affiliation\": \"LECA\"}]", | 21 | \"affiliation\": \"LECA\"}]", | ||
22 | "author_email": null, | 22 | "author_email": null, | ||
23 | "creator_user_id": "e2620cc0-c9ef-4773-889b-4c39c0bbb3c8", | 23 | "creator_user_id": "e2620cc0-c9ef-4773-889b-4c39c0bbb3c8", | ||
24 | "date": "[{\"date\": \"2021-06-02\", \"date_type\": \"created\", | 24 | "date": "[{\"date\": \"2021-06-02\", \"date_type\": \"created\", | ||
25 | \"end_date\": \"2021-06-02\"}]", | 25 | \"end_date\": \"2021-06-02\"}]", | ||
26 | "doi": "10.16904/envidat.226", | 26 | "doi": "10.16904/envidat.226", | ||
27 | "funding": "[{\"grant_number\": \"ANR-10-LAB-56, ANR-16-CE93-004\", | 27 | "funding": "[{\"grant_number\": \"ANR-10-LAB-56, ANR-16-CE93-004\", | ||
28 | \"institution\": \"Agence Nationale de la Recherche\", | 28 | \"institution\": \"Agence Nationale de la Recherche\", | ||
29 | \"institution_url\": \"https://anr.fr/Project-ANR-16-CE93-0004\"}, | 29 | \"institution_url\": \"https://anr.fr/Project-ANR-16-CE93-0004\"}, | ||
30 | {\"grant_number\": \"310030L_170059\", \"institution\": | 30 | {\"grant_number\": \"310030L_170059\", \"institution\": | ||
31 | \"Schweizerischer Nationalfonds zur F\u00f6rderung der | 31 | \"Schweizerischer Nationalfonds zur F\u00f6rderung der | ||
32 | Wissenschaftlichen Forschung\", \"institution_url\": | 32 | Wissenschaftlichen Forschung\", \"institution_url\": | ||
33 | \"http://p3.snf.ch/Project-170059\"}]", | 33 | \"http://p3.snf.ch/Project-170059\"}]", | ||
34 | "groups": [], | 34 | "groups": [], | ||
35 | "id": "a09eb932-e181-47a3-945a-7f7cde5d2393", | 35 | "id": "a09eb932-e181-47a3-945a-7f7cde5d2393", | ||
36 | "isopen": true, | 36 | "isopen": true, | ||
37 | "language": "en", | 37 | "language": "en", | ||
38 | "license_id": "cc-by-sa", | 38 | "license_id": "cc-by-sa", | ||
39 | "license_title": "Creative Commons Attribution Share-Alike | 39 | "license_title": "Creative Commons Attribution Share-Alike | ||
40 | (CC-BY-SA)", | 40 | (CC-BY-SA)", | ||
41 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | 41 | "license_url": "https://creativecommons.org/licenses/by-sa/4.0/", | ||
42 | "maintainer": "{\"affiliation\": \"WSL\", \"email\": | 42 | "maintainer": "{\"affiliation\": \"WSL\", \"email\": | ||
43 | \"yohann.chauvier@wsl.ch\", \"given_name\": \"Yohann\", | 43 | \"yohann.chauvier@wsl.ch\", \"given_name\": \"Yohann\", | ||
44 | \"identifier\": \"https://orcid.org/0000-0001-9399-3192\", \"name\": | 44 | \"identifier\": \"https://orcid.org/0000-0001-9399-3192\", \"name\": | ||
45 | \"Chauvier\"}", | 45 | \"Chauvier\"}", | ||
46 | "maintainer_email": null, | 46 | "maintainer_email": null, | ||
47 | "metadata_created": "2021-06-02T13:35:35.900157", | 47 | "metadata_created": "2021-06-02T13:35:35.900157", | ||
t | 48 | "metadata_modified": "2023-02-13T10:45:48.932573", | t | 48 | "metadata_modified": "2023-02-13T10:45:53.906322", |
49 | "name": "correct-observer-bias-only-sdms", | 49 | "name": "correct-observer-bias-only-sdms", | ||
50 | "notes": "Aim: While species distribution models (SDMs) are standard | 50 | "notes": "Aim: While species distribution models (SDMs) are standard | ||
51 | tools to predict species distributions, they can suffer from | 51 | tools to predict species distributions, they can suffer from | ||
52 | observation and sampling biases, particularly presence-only SDMs that | 52 | observation and sampling biases, particularly presence-only SDMs that | ||
53 | often rely on species observations from non-standardized sampling | 53 | often rely on species observations from non-standardized sampling | ||
54 | efforts. To address this issue, sampling background points with a | 54 | efforts. To address this issue, sampling background points with a | ||
55 | target-group strategy is commonly used, although more robust | 55 | target-group strategy is commonly used, although more robust | ||
56 | strategies and refinements could be implemented. Here, we exploited a | 56 | strategies and refinements could be implemented. Here, we exploited a | ||
57 | dataset of plant species from the European Alps to propose and | 57 | dataset of plant species from the European Alps to propose and | ||
58 | demonstrate efficient ways to correct for observer and sampling bias | 58 | demonstrate efficient ways to correct for observer and sampling bias | ||
59 | in presence-only models. \r\n\r\nInnovation: Recent methods correct | 59 | in presence-only models. \r\n\r\nInnovation: Recent methods correct | ||
60 | for observer bias by using covariates related to accessibility in | 60 | for observer bias by using covariates related to accessibility in | ||
61 | model calibrations (classic bias covariate correction, Classic-BCC). | 61 | model calibrations (classic bias covariate correction, Classic-BCC). | ||
62 | However, depending on how species are sampled, accessibility | 62 | However, depending on how species are sampled, accessibility | ||
63 | covariates may not sufficiently capture observer bias. Here, we | 63 | covariates may not sufficiently capture observer bias. Here, we | ||
64 | introduced BCCs more directly related to sampling effort, as well as a | 64 | introduced BCCs more directly related to sampling effort, as well as a | ||
65 | novel corrective method based on stratified resampling of the | 65 | novel corrective method based on stratified resampling of the | ||
66 | observational dataset before model calibration (environmental bias | 66 | observational dataset before model calibration (environmental bias | ||
67 | correction, EBC). We compared, individually and jointly, the effect of | 67 | correction, EBC). We compared, individually and jointly, the effect of | ||
68 | EBC and different BCC strategies, when modelling the distributions of | 68 | EBC and different BCC strategies, when modelling the distributions of | ||
69 | 1\u2019900 plant species. We evaluated model performance with spatial | 69 | 1\u2019900 plant species. We evaluated model performance with spatial | ||
70 | block split-sampling and independent test data, and assessed the | 70 | block split-sampling and independent test data, and assessed the | ||
71 | accuracy of plant diversity predictions across the European | 71 | accuracy of plant diversity predictions across the European | ||
72 | Alps.\r\n\r\nMain conclusions: Implementing EBC with BCC showed best | 72 | Alps.\r\n\r\nMain conclusions: Implementing EBC with BCC showed best | ||
73 | results for every evaluation method. Particularly, adding the | 73 | results for every evaluation method. Particularly, adding the | ||
74 | observation density of a target group as bias covariate (Target-BCC) | 74 | observation density of a target group as bias covariate (Target-BCC) | ||
75 | displayed most realistic modelled species distributions, with a clear | 75 | displayed most realistic modelled species distributions, with a clear | ||
76 | positive correlation (r\u22430.5) found between predicted and | 76 | positive correlation (r\u22430.5) found between predicted and | ||
77 | expert-based species richness. Although EBC must be carefully | 77 | expert-based species richness. Although EBC must be carefully | ||
78 | implemented in a species-specific manner, such limitations may be | 78 | implemented in a species-specific manner, such limitations may be | ||
79 | addressed via automated diagnostics included in a provided R function. | 79 | addressed via automated diagnostics included in a provided R function. | ||
80 | Implementing EBC and bias covariate correction together may allow | 80 | Implementing EBC and bias covariate correction together may allow | ||
81 | future studies to address efficiently observer bias in presence-only | 81 | future studies to address efficiently observer bias in presence-only | ||
82 | models, and overcome the standard need of an independent test dataset | 82 | models, and overcome the standard need of an independent test dataset | ||
83 | for model evaluation.", | 83 | for model evaluation.", | ||
84 | "num_resources": 1, | 84 | "num_resources": 1, | ||
85 | "num_tags": 10, | 85 | "num_tags": 10, | ||
86 | "organization": { | 86 | "organization": { | ||
87 | "approval_status": "approved", | 87 | "approval_status": "approved", | ||
88 | "created": "2018-05-31T14:24:18.890912", | 88 | "created": "2018-05-31T14:24:18.890912", | ||
89 | "description": "The dynamic macroecology group studies different | 89 | "description": "The dynamic macroecology group studies different | ||
90 | aspects of ecology on large spatial and temporal scales, from the | 90 | aspects of ecology on large spatial and temporal scales, from the | ||
91 | Pleistocene to the Anthropocene, related to the question: \u201cHow do | 91 | Pleistocene to the Anthropocene, related to the question: \u201cHow do | ||
92 | species and their traits change in space and time, particularly with | 92 | species and their traits change in space and time, particularly with | ||
93 | global change?\u201d", | 93 | global change?\u201d", | ||
94 | "id": "8bdea9a0-ea8c-424f-8c27-a4a1f0c55f02", | 94 | "id": "8bdea9a0-ea8c-424f-8c27-a4a1f0c55f02", | ||
95 | "image_url": "2018-07-10-102727.341687LogoWSL.svg", | 95 | "image_url": "2018-07-10-102727.341687LogoWSL.svg", | ||
96 | "is_organization": true, | 96 | "is_organization": true, | ||
97 | "name": "dynamic-macroecology", | 97 | "name": "dynamic-macroecology", | ||
98 | "state": "active", | 98 | "state": "active", | ||
99 | "title": "Dynamic Macroecology", | 99 | "title": "Dynamic Macroecology", | ||
100 | "type": "organization" | 100 | "type": "organization" | ||
101 | }, | 101 | }, | ||
102 | "owner_org": "8bdea9a0-ea8c-424f-8c27-a4a1f0c55f02", | 102 | "owner_org": "8bdea9a0-ea8c-424f-8c27-a4a1f0c55f02", | ||
103 | "private": false, | 103 | "private": false, | ||
104 | "publication": "{\"publication_year\": \"2021\", \"publisher\": | 104 | "publication": "{\"publication_year\": \"2021\", \"publisher\": | ||
105 | \"EnviDat\"}", | 105 | \"EnviDat\"}", | ||
106 | "publication_state": "published", | 106 | "publication_state": "published", | ||
107 | "related_datasets": "KARGER, Dirk Nikolaus, CONRAD, Olaf, | 107 | "related_datasets": "KARGER, Dirk Nikolaus, CONRAD, Olaf, | ||
108 | B\u00d6HNER, J\u00fcrgen, et al. Climatologies at high resolution for | 108 | B\u00d6HNER, J\u00fcrgen, et al. Climatologies at high resolution for | ||
109 | the earth\u2019s land surface areas. Scientific data, 2017, vol. 4, no | 109 | the earth\u2019s land surface areas. Scientific data, 2017, vol. 4, no | ||
110 | 1, p. 1-20.\r\n\r\nAeschimann, D., Lauber, K., Moser, D.M. & | 110 | 1, p. 1-20.\r\n\r\nAeschimann, D., Lauber, K., Moser, D.M. & | ||
111 | Theurillat, J.P. (2004) Flora alpina: ein Atlas s\u00e4mtlicher 4500 | 111 | Theurillat, J.P. (2004) Flora alpina: ein Atlas s\u00e4mtlicher 4500 | ||
112 | Gef\u00e4sspflanzen der Alpen., (ed. by Haupt).", | 112 | Gef\u00e4sspflanzen der Alpen., (ed. by Haupt).", | ||
113 | "related_publications": "", | 113 | "related_publications": "", | ||
114 | "relationships_as_object": [], | 114 | "relationships_as_object": [], | ||
115 | "relationships_as_subject": [], | 115 | "relationships_as_subject": [], | ||
116 | "resource_type": "dataset", | 116 | "resource_type": "dataset", | ||
117 | "resource_type_general": "dataset", | 117 | "resource_type_general": "dataset", | ||
118 | "resources": [ | 118 | "resources": [ | ||
119 | { | 119 | { | ||
120 | "cache_last_updated": null, | 120 | "cache_last_updated": null, | ||
121 | "cache_url": null, | 121 | "cache_url": null, | ||
122 | "created": "2021-06-02T14:00:52.109758", | 122 | "created": "2021-06-02T14:00:52.109758", | ||
123 | "description": "Non-copyright data, scripts, diversity outputs", | 123 | "description": "Non-copyright data, scripts, diversity outputs", | ||
124 | "doi": "", | 124 | "doi": "", | ||
125 | "format": "ZIP", | 125 | "format": "ZIP", | ||
126 | "hash": "", | 126 | "hash": "", | ||
127 | "id": "d2665a9b-a7de-4bff-8f6e-6dbf0406fd0b", | 127 | "id": "d2665a9b-a7de-4bff-8f6e-6dbf0406fd0b", | ||
128 | "last_modified": "2022-04-06T16:28:26.014304", | 128 | "last_modified": "2022-04-06T16:28:26.014304", | ||
129 | "metadata_modified": "2022-04-06T14:28:26.354912", | 129 | "metadata_modified": "2022-04-06T14:28:26.354912", | ||
130 | "mimetype": null, | 130 | "mimetype": null, | ||
131 | "mimetype_inner": null, | 131 | "mimetype_inner": null, | ||
132 | "name": "PPM_bias_correction", | 132 | "name": "PPM_bias_correction", | ||
133 | "package_id": "a09eb932-e181-47a3-945a-7f7cde5d2393", | 133 | "package_id": "a09eb932-e181-47a3-945a-7f7cde5d2393", | ||
134 | "position": 0, | 134 | "position": 0, | ||
135 | "publication_state": "", | 135 | "publication_state": "", | ||
136 | "resource_size": "{\"size_value\": \"\", \"size_units\": | 136 | "resource_size": "{\"size_value\": \"\", \"size_units\": | ||
137 | \"kb\"}", | 137 | \"kb\"}", | ||
138 | "resource_type": null, | 138 | "resource_type": null, | ||
139 | "restricted": "{\"level\": \"public\", \"allowed_users\": \"\", | 139 | "restricted": "{\"level\": \"public\", \"allowed_users\": \"\", | ||
140 | \"shared_secret\": \"\"}", | 140 | \"shared_secret\": \"\"}", | ||
141 | "size": 410411202, | 141 | "size": 410411202, | ||
142 | "state": "active", | 142 | "state": "active", | ||
143 | "url": | 143 | "url": | ||
144 | /d2665a9b-a7de-4bff-8f6e-6dbf0406fd0b/download/nc_data_n_scripts.zip", | 144 | /d2665a9b-a7de-4bff-8f6e-6dbf0406fd0b/download/nc_data_n_scripts.zip", | ||
145 | "url_type": "upload" | 145 | "url_type": "upload" | ||
146 | } | 146 | } | ||
147 | ], | 147 | ], | ||
148 | "spatial": | 148 | "spatial": | ||
149 | ,[17.5341796875,42.7416346551412],[4.9658203125,42.7416346551412]]]}", | 149 | ,[17.5341796875,42.7416346551412],[4.9658203125,42.7416346551412]]]}", | ||
150 | "spatial_info": "European Alps", | 150 | "spatial_info": "European Alps", | ||
151 | "state": "active", | 151 | "state": "active", | ||
152 | "subtitle": "", | 152 | "subtitle": "", | ||
153 | "tags": [ | 153 | "tags": [ | ||
154 | { | 154 | { | ||
155 | "display_name": "BACKGROUND DATA", | 155 | "display_name": "BACKGROUND DATA", | ||
156 | "id": "1e27ed57-ffec-4efd-b062-7f2a5c468276", | 156 | "id": "1e27ed57-ffec-4efd-b062-7f2a5c468276", | ||
157 | "name": "BACKGROUND DATA", | 157 | "name": "BACKGROUND DATA", | ||
158 | "state": "active", | 158 | "state": "active", | ||
159 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
160 | }, | 160 | }, | ||
161 | { | 161 | { | ||
162 | "display_name": "CLUSTER", | 162 | "display_name": "CLUSTER", | ||
163 | "id": "7bb4c8f8-c05f-43e0-9624-7ab60347c4c2", | 163 | "id": "7bb4c8f8-c05f-43e0-9624-7ab60347c4c2", | ||
164 | "name": "CLUSTER", | 164 | "name": "CLUSTER", | ||
165 | "state": "active", | 165 | "state": "active", | ||
166 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
167 | }, | 167 | }, | ||
168 | { | 168 | { | ||
169 | "display_name": "COVARIATE CORRECTION", | 169 | "display_name": "COVARIATE CORRECTION", | ||
170 | "id": "05fb2a81-0db9-4c1e-8606-bad1d5205f14", | 170 | "id": "05fb2a81-0db9-4c1e-8606-bad1d5205f14", | ||
171 | "name": "COVARIATE CORRECTION", | 171 | "name": "COVARIATE CORRECTION", | ||
172 | "state": "active", | 172 | "state": "active", | ||
173 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
174 | }, | 174 | }, | ||
175 | { | 175 | { | ||
176 | "display_name": "ENVIRONMENTAL STRATIFICATION", | 176 | "display_name": "ENVIRONMENTAL STRATIFICATION", | ||
177 | "id": "54036d5a-28d8-46ed-ab48-9a9e556408b9", | 177 | "id": "54036d5a-28d8-46ed-ab48-9a9e556408b9", | ||
178 | "name": "ENVIRONMENTAL STRATIFICATION", | 178 | "name": "ENVIRONMENTAL STRATIFICATION", | ||
179 | "state": "active", | 179 | "state": "active", | ||
180 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
181 | }, | 181 | }, | ||
182 | { | 182 | { | ||
183 | "display_name": "INDEPENDENT DATASET", | 183 | "display_name": "INDEPENDENT DATASET", | ||
184 | "id": "7d31474e-3f35-499d-89bd-b37b1b9e615a", | 184 | "id": "7d31474e-3f35-499d-89bd-b37b1b9e615a", | ||
185 | "name": "INDEPENDENT DATASET", | 185 | "name": "INDEPENDENT DATASET", | ||
186 | "state": "active", | 186 | "state": "active", | ||
187 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
188 | }, | 188 | }, | ||
189 | { | 189 | { | ||
190 | "display_name": "PLANT SPECIES", | 190 | "display_name": "PLANT SPECIES", | ||
191 | "id": "269cf433-87f4-4c60-bcd7-52cc7ad22bc2", | 191 | "id": "269cf433-87f4-4c60-bcd7-52cc7ad22bc2", | ||
192 | "name": "PLANT SPECIES", | 192 | "name": "PLANT SPECIES", | ||
193 | "state": "active", | 193 | "state": "active", | ||
194 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
195 | }, | 195 | }, | ||
196 | { | 196 | { | ||
197 | "display_name": "POINT PROCESS MODEL", | 197 | "display_name": "POINT PROCESS MODEL", | ||
198 | "id": "37903065-b772-45e2-b27b-10ba6204738c", | 198 | "id": "37903065-b772-45e2-b27b-10ba6204738c", | ||
199 | "name": "POINT PROCESS MODEL", | 199 | "name": "POINT PROCESS MODEL", | ||
200 | "state": "active", | 200 | "state": "active", | ||
201 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
202 | }, | 202 | }, | ||
203 | { | 203 | { | ||
204 | "display_name": "RANDOM STRATIFIED SAMPLING", | 204 | "display_name": "RANDOM STRATIFIED SAMPLING", | ||
205 | "id": "1f1eb4bb-6443-4307-bda5-a0eae20f1afb", | 205 | "id": "1f1eb4bb-6443-4307-bda5-a0eae20f1afb", | ||
206 | "name": "RANDOM STRATIFIED SAMPLING", | 206 | "name": "RANDOM STRATIFIED SAMPLING", | ||
207 | "state": "active", | 207 | "state": "active", | ||
208 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
209 | }, | 209 | }, | ||
210 | { | 210 | { | ||
211 | "display_name": "SURVEY EFFORT", | 211 | "display_name": "SURVEY EFFORT", | ||
212 | "id": "522315db-d363-4b75-8a17-5960c6f391f0", | 212 | "id": "522315db-d363-4b75-8a17-5960c6f391f0", | ||
213 | "name": "SURVEY EFFORT", | 213 | "name": "SURVEY EFFORT", | ||
214 | "state": "active", | 214 | "state": "active", | ||
215 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
216 | }, | 216 | }, | ||
217 | { | 217 | { | ||
218 | "display_name": "TARGET GROUP", | 218 | "display_name": "TARGET GROUP", | ||
219 | "id": "b835c741-e505-4fb5-95d3-817d0173a1c0", | 219 | "id": "b835c741-e505-4fb5-95d3-817d0173a1c0", | ||
220 | "name": "TARGET GROUP", | 220 | "name": "TARGET GROUP", | ||
221 | "state": "active", | 221 | "state": "active", | ||
222 | "vocabulary_id": null | 222 | "vocabulary_id": null | ||
223 | } | 223 | } | ||
224 | ], | 224 | ], | ||
225 | "title": "Novel methods to correct for observer and sampling bias in | 225 | "title": "Novel methods to correct for observer and sampling bias in | ||
226 | presence-only species distribution models", | 226 | presence-only species distribution models", | ||
227 | "type": "dataset", | 227 | "type": "dataset", | ||
228 | "url": null, | 228 | "url": null, | ||
229 | "version": "1.0" | 229 | "version": "1.0" | ||
230 | } | 230 | } |